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1. Executive Summary 
Gartner Research estimates that 40% of a software projects effort is spent on interfacing 
the software with other software systems. The costs of duplicate data errors and re-keying 
of data has been well discussed in many papers on integrated justice systems from 
SEARCH, IJIS Institute, BJA, and others. The mechanisms of software integration are 
therefore critical to solving the justice information integration problem. This paper builds 
the background necessary to understand the business advantages and disadvantages of 
any integration architecture. 
 
This paper takes any level of reader through a primer of what is information integration 
and then moves on to present the various data architectures for integration. Against this 
background the system architecture of a Service-Oriented Architecture (SOA) is detailed. 
 
The paper proposes that the system architecture of SOA provides the best model for the 
vagaries found in justice integration projects. SOA is that next major evolution in 
architecture that leverages the work of web services and XML, which are becoming 
common in justice integration today. Both web services and XML are capabilities, not 
stopping points, which help to enable the larger requirements of an integration 
architecture that is cost-effective, flexible, and future-proof. For justice integration, that 
architecture is SOA. SOA not only natively supports integration capabilities, it also 
allows for rapid process and workflow analysis and modeling which are critical in these 
times of watchful budget control and need for real-time access to complete information. 
The paper shows how the full value of the work of SEARCH and the XML model 
GJXDM are realized only in a service-oriented architecture. 
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2. Introduction 
We need better information integration between our justice systems today. This headline 
statement is old news to the justice community. What is news is how fast integration 
technology has matured since being introduced in the early 1990’s. Integration has been 
one of the top four investment areas of CIO’s since 2000 as surveyed by Morgan Stanley 
each quarter. Just because the integration of information systems is a major priority does 
not make it a simple task. Integration solutions are much harder to implement than 
applications1 because integration involves the total technology environment. The 
concepts for integration are actually very simple; it is the magnitude that makes the task a 
challenge. 
 
 

                                                 
1 Application(s) – another term for a computer system or program, an example of an application would be a 
court scheduling program, criminal history system, or jail management system. 
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3. The Fundamentals of Integration 

3.1 Integration patterns 
A review of Justice Integration projects and planned projects over the last 5 years reveals 
that the scope of what information integration means in the justice community is very 
broad. The integration patterns encountered can be organized into the following 
categories:  

1. Virtual query or portal 
2. Data warehouse 
3. Centralized index (lookup table) 
4. Justice application suite 
5. Enterprise Application Integration (EAI) 

 
A starting point for justice integration is to define application integration. The author’s 
research has shown that “data politics” defines which integration pattern is used in nearly 
every situation, rather than the capabilities or needs of the operation or technology. Data 
politics is defined as the willingness and political ability of one organization to share data 
with another organization.  
 
Integration patterns vary by the level of information integration. Table 1 describes the 
range of information integration in contrast to the integration pattern. 
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Integration 
Pattern 

Information 
Integration 
Capability 

Application 
data is 
updated 
automatically 
(based on 
business 
rules) 

Only one 
copy of the 
data 

Always 
accessing 
the most 
current 
information 

Defines a 
definitive 
Source 
for a data 
element  

Enables 
process or 
workflow 
improvements

Virtual 
Query/Portal 

Low No Yes Yes No No 

Data 
warehouse 

Low No No No No No 

Centralized 
Index 
(lookup 
table) 

Low No No No No No 

Justice 
Application 
Suite 

High Yes Yes Yes Yes No 

Enterprise 
Application 
Integration 
(EAI) 

High Yes Yes Yes Yes Yes 

Table 1 
 

3.1.1 Description of common Justice Integration Patterns  
Virtual Query (or Portal) 
The typical implementation of a virtual query is to access a small set of data from a select 
few justice applications and then making the results available in an internet browser. 
Examples of the typical type of data queries are: retrieving a mug shot, SID lookup, or 
inmate locator.  
 

Advantages: 
• Virtual queries give a quick visible fix to the need to provide access to justice 

information. 
 
Integration Limitations: 
• If what you want is not in the query, you need to make a request to have it 

programmed. 
• There is no system-to-system integration, so inconsistent information between 

systems is still possible. 
• Does nothing to solve the re-keying problem of justice data. 
• Single threaded to a web server (which will display the query pages), which if 

development is sloppy will become a rat’s nest of transformation logic needed 
for each accessed application. 

• No ability to examine and improve business process or workflow 
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• Most virtual queries projects start out with modest needs and then the needs 
grow. This causes the source applications to be revisited many times to 
“tweak” the interface to get just that next piece of data. Each new tweak takes 
longer since there is no structured plan to add tweaks. 

• Software must be built or acquired to transform the many data sources into a 
useable format. 

• There is no event notification when data changes; the requestor must 
constantly re-query to get the latest information. 

 
 
Data Warehouse 
A data warehouse can be considered to be the old form of a virtual query. In a virtual 
query, data can be assimilated from many applications on the fly and never stored. A data 
warehouse assimilates information from many sources but stores the information in a 
database for later retrieval. 
 

Advantages: 
• The native applications are in tight control of their data. 
 
Integration Limitations 
• A data warehouse makes two copies of the information; there is now a data 

currency issue. 
• Building a data warehouse is not a quick process since a database must be 

developed. 
• The data in the warehouse is only as “fresh” as the last data warehouse load. 

When you access the data warehouse, how do you know that the data you 
have is the most current? What happens if the last data warehouse load failed? 

• If what you want is not in the data warehouse, you have a major development 
effort to get it in the query; data extraction code, transformation code, 
redesign the data warehouse, and update data warehouse query tool. 

• There is no system-to-system integration, so inconsistent information between 
systems is still possible. 

• Does nothing to solve the re-keying problem of justice data. 
• No ability to examine and improve business process or workflow. 
• Software must be built or acquired to transform the many data sources into a 

useable format. 
• There is no event notification when data changes, the requestor must 

constantly re-query to get the latest information. 
• A data warehouse is not integration; it is just part of a data query tool. 
 

 
Centralized Index 
A centralized index works like a telephone book; it only maintains indexes to where the 
actual data is located. Once the data is located then the operations are similar to the 
virtual query. 
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Advantages: 
• The native applications are in tight control of their data.  
 
Integration Limitations: 
• A centralized index makes two copies of the key (indexing entity); the index 

must be in constant communication with source systems to ensure the indexes 
are valid. 

• If what you want is not in the central index, you have to submit a development 
request. 

• There is no system-to-system integration, so inconsistent information between 
systems is still possible. 

• Does nothing to solve the re-keying problem of justice data. 
• No ability to examine and improve business process or workflow. 
• There is no event notification when data changes; the requestor must 

constantly re-query to get the latest information. 
• An end user query tool is still needed; people cannot just access the index to 

find the data. 
 

 
Justice Application Suite 
All justice applications are from the same vendor, similar to buying all your PC 
applications from Microsoft. 
 

Advantages 
• Everything works together and data integration is built in. 
 
Integration Limitations: 
• Buying justice applications as a suite from one vendor is not practical at the 

state level due to cost, politics, and installed applications. At the county level, 
suites are a possibility. 

• As processes and needs change over time, there will be constant modification 
of code that may or may not be maintainable.  

• Best of breed applications cannot be utilized; you are stuck with the vendors’ 
capabilities. 

 
 
Enterprise Application Integration (EAI) 
Developed in the late 1990’s and validated in the private sector, EAI is what technology 
analysts such as Gartner, Meta Group, and major vendors (Oracle, IBM, SUN, SAP, 
Peoplesoft…) define as integration. EAI is a set of software tools and design techniques 
that provide the following: 
 

Advantages 
• Data is shared between applications, not from a secondary source; data is 

current. 
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• Applications can update other applications when changes occur (based on 
business rules). 

• New applications or application changes can be made and cause minimal to no 
impact to other systems. 

• With data integrated, business process and workflow improvements can now 
be analyzed and addressed. 

 
Integration Limitations: 
• It takes considerable more planning to implement an EAI architecture since 

data is looked at in an enterprise sense, not just in silos. Once the plan is 
established, then rolling out an EAI can be done in phases.  
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4. Enterprise Application Integration (EAI) - Explained 

4.1 Why is EAI different? 
EAI is a data architecture for sharing data to make applications consistent and current in 
the usage of key business data. EAI is not an application such as a portal, data warehouse, 
or a consolidating index; these are applications because their purpose is singular in 
purpose, to consolidate information for a query. The definition of data architecture from 
Carnegie Mellon Software Engineering Institute helps draw the distinction: 

Data architecture defines how data is stored, managed, and used in a system. It 
establishes common guidelines for data operations that make it possible to 
predict, model, gauge, and control the flow of data in the system. This is even 
more important when system components are developed by or acquired from 
different contractors or vendors. 2 

 

4.2 The advantages of an EAI approach to Justice 
Integration 

Many papers, presentations, and books have been written to answer the question of why 
use EAI. Not to minimize those efforts, the advantage of EAI over other data integration 
patterns is simply that EAI provides business flexibility to the applications you have 
purchased. Applications have been purchased to solve point issue, e.g. computerize 
criminal history data or an automated calendar system for courts; each of these are point 
solutions. Just as much as it takes many different types of specialized agencies and their 
people to provide safety and security to the citizenship, it has also taken specialized 
applications to assist them in performing those duties. To continue the analogue, no 
agency can stand alone in providing all the services needed in the justice community. 
Everyone needs to communicate with each other to get their jobs done. The applications 
of a justice system need that same level of communication. EAI is to justice applications 
like the telephone system is to people of the justice community. People can change 
offices, buildings, and even agencies and you can reach them with a phone call. EAI 
provides the same level of access to data (following business rules). Once the EAI 
architecture is in place, adding or changing applications no longer requires many months 
of software development. No other data integration pattern provides the business 
flexibility of EAI. 
 

4.3 Fundamentals of EAI 

4.3.1 The Logical Process of EAI 
EAI technology takes application data, normalizes it and then routes the information to 
the appropriate application, and then converts the normalized data back into application 

                                                 
2 An Enterprise Information System Data Architecture Guide CMU/SEI-2001-TR-018 ESC-TR-2001-018 
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specific format. The prior alternative was to write custom interfaces to each application; 
this old method becomes a maintenance nightmare after about three interfaces. 
Figure 1 illustrates the difference between EAI and old interface integration. Advances in 
EAI technology have added business rules and system management capabilities to the 
solution stack. These functions will be discussed later. 
 
 

 
Figure 1 

 

4.3.2 Getting the data for EAI 
Applications process data. Data is entered into the application, it is processed, and a 
result is stored and/or sent to the requestor. This is the generic functionality of any 
application. Integration requires access to the data of an application to be able to integrate 
the application with other applications. There are only two ways to access the data in any 
application: 

1) Access the data directly inside the running application. 
2) Access the data where the application stores the data (where data rests). 

 
Access the Data in the Application 
The most common way of getting inside an application is through an API (application 
programming interface). APIs provide a model to a programmer of how to write code 
to communicate to the running application. Getting the data directly out of an 
application may seem like the best way to get data for integration, but it is not.  
 
Accessing data via an API method is almost never used because: 
• Most old applications do not have APIs. 
• The APIs are so arcane in usage as to be almost unusable. 
• Changes to the application by the vendor (upgrades) may make the API unusable. 
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Applications store data in flat files and databases. This is the most common place to 
get application data for integration because: 
• How to access flat files or databases is well understood. 
• The data elements are stable and not transient as in a running application. 

 
Every vendor of EAI products provides adapters and an adapter’s developer’s toolkit. 
Adapters perform the conversion of data into and out of an application. Adapters make 
accessing most files and databases almost a point and click operation. For those data 
stores that have no stock adapter, the adapter tool kit can be used to build an adapter to 
access the data. FIGURE 2 illustrates the EAI components. 
 

Figure 2 

4.3.3 Integrating Application Data 
EAI systems can either poll for data to integrate or be sent data by the adapter when it is 
changed in the application. This is called event-driven data. In either case, the EAI 
routing engine takes the data and determines what other applications have registered to 
receive this data set, and sends the data set to those applications. The EAI routing engine 
can be loaded with rules for data validation, cleansing, and manipulation of any 
magnitude and scope so that the receiving applications receive the correct data. The 
capabilities of routing and rules will not be covered in this paper since the capabilities 
vary by vendor. It is at this point that the data from one application has been integrated to 
the other application. FIGURE 3 illustrates the EAI components at this point. 
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FIGURE 3 – take figure #2 and add routing engine 
 

 
Figure 3 

 

4.3.4 Web Services, XML, and EAI 
Many people think that web services and XML obviate the need for EAI. By way of 
analogue, the world would not need translators if everyone spoke one language. Web 
services and XML are only a small part of the integration solution. XML is a way to 
structure a data message, the same as grammar rules structure words on a paper, as to 
where punctuation occurs and capitalization. XML does not provide the next lower level 
of organization, knowing that a particular data element is a valid SSN. XML just provides 
a structure for holding SSN data in a data message. XML is routinely used as the message 
format in EAI products since the format is well understood and easy to debug. 
 
Web services are a three-part technology that leverages XML. The three parts are: 

1) SOAP – Simple Object Access Protocol 
SOAP defines the vocabulary for the message (the envelope and payload format). 
 

2) WSDL – Web Services Description Language 
WSDL is an XML document that describes what a service does and how to 
communicate with that service (typically the internet protocol, HTTP). When a 
service is needed, the WSDL request describes what is being searched for and the 
communications protocol needed to communicate when the service is located. An 
example of a service would be a mug shot service; pass the mug shot service a 
SID and receive back the mug shot. 
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3) UDDI – Universal Directory Description Interface 
UDDI is a “yellow pages” of available services on the network. If a mug shot 
service is needed, UDDI will tell the requesting service where such a service is 
located and the interface parameters. 

 
The functionality still missing from web services and XML are: 
• Applications still do not speak XML; adapters are still needed. 
• There is no validation that the data in an XML packet is valid. The data in the SSN 

placeholder may not even be SSN or in valid syntax. 
• Routing the data message to the right location in a quality of service framework. 
• There is no information (in the standards) that tells how the data is to be processed (or 

validated). 
• Security and authorization standards are just starting to be proposed (WS-I Security). 
 
EAI technology supplies all the missing functionality. It should be noted that EAI 
technology vendors without exception embrace web services and XML. The technology 
will allow many of the mundane low value tasks (building adapters) to be avoided and it 
opens a higher value world of business process and workflow management. 
FIGURE 4 illustrates the EAI components at this point. 
 

 
Figure 4 

 

4.3.5 The case of industry specific XML 
The power of XML to describe its own internal data has led to the generation of many 
industry specific XML models. GJXDM (Global Justice XML Data Model) is one of 
these industry specific XML models. An industry specific XML data model not only 
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describes the elements of the data model but also the data type (e.g. integer, real, 
character). For example, the data model for ARREST TYPE in GJXDM has many data 
elements, some of which are activity ID, date, and time. Each data element has been 
typed to be of a specific data type. If you use GJXDM and place data in the time field, it 
will be the same format as anyone else using the GJXDM data type - time. GJXDM (and 
other industry specific XML formats) are forcing a common defined language. If all 
justice applications spoke in GJXDM, then there would never be a need to translate (in 
this case, time) a data instance from the CAD system to the booking system. Even with 
industry-specific XML models, there will be a need to use translation programs/adapters 
to translate data between applications and the XML model. In the future, when all 
applications can interface to GJXDM, then adapters will not be required. 
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5. EAI to SOA 
EAI is a data architecture for integration; Service-Oriented Architecture (or SOA) is a 
system architecture. A system architecture incorporates data architecture as well as many 
other architecture designs, management, security, and infrastructure among others. This 
paper is concerned with the general aspects of how SOA drives integration architecture to 
benefit justice integration. 
 
Several technology initiatives have combined over the last decade to make SOA the 
recommended system architecture for integration. Those technologies are XML, web 
services, and EAI. SOA is a method of building systems; it is not a product. SOA 
describes how applications are designed, built and interact with each other. An SOA 
describes an application as a grouping of many services or business processes. A service 
is analogous to a business process. Validating and retrieving the data for a given SID 
would be an example of a service or business process. 
 
Applications, and therefore services, are decoupled from each other (abstracted). The data 
movement is abstracted from the application, and the business process (service) is 
exposed. While this may sound implausible, it is possible due to the technologies of XML 
(which provides a standard way to represent data), web services (which provides a 
standard way to locate and utilize services), and EAI (which provides data 
transformation, and the abstraction of data from applications). 
 
The concepts of SOA can be applied to legacy applications by wrapping the application 
in service points. Vendor applications can be treated the same way. 
 
A common world analogue can help explain SOA. The relationship between an electrical 
appliance and the electric utility is an example of service-oriented architecture. The 
electric company has no idea how the electric is being used and the appliance does not 
care how the electricity is supplied to the wall plate. If the appliance and the utility were a 
tightly-coupled, dependent relationship, then every time you buy an appliance, you would 
need to call the electric company and register the characteristics of the appliance. 
Depending on those characteristics, the electric company may have to string another line 
into your home to service just that appliance. Interface standards and processing 
standards provide the flexibility in the electric system. The community of justice 
integration is closer realizing this services model than even the private sector due to the 
work in XML by GJXDM and modeling efforts by SEARCH and others (URL 
Integration). 
 
At its core, SOA is about abstracting data, business rules, requestors of service, and 
consumers of service from each other. The less each of these components knows about 
the particular implementation of each other, the easier it is for the justice system to 
handle business process changes. So how does an application work if it is abstracted 
(hidden) from its data? How does one application communicate with another if they are 
abstracted? It is not magic. The technology used is in place today, XML, Webservices, 
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and EAI. The justice communities get an extra boost with the normalized data model 
GJXDM and the process models provided by SEARCH and others. 
 

5.1 SOA Operations in Justice Integration 
As much as GJXDM is attempting to model the data entities in a standardized justice 
environment, the SEARCH process models are attempting to model the business rules in 
a standardized justice environment. Using these efforts as a starting point, any justice 
system can be defined with a core set of data entities and a library of business rules that 
act on these data entities. The term “common business object” best describes these data 
entities because they are not flat structures (e.g. simple attributes about a person) but are 
rather very complete descriptions (e.g. person attributes and their criminal history). The 
common business object for an arrest record, if populated with data, would contain a 
complete picture of the arrest record for a suspect. Common business objects are 
specialized containers structured in XML following the examples set forth in GJXDM. 
The data from legacy systems interacts with common business object through adapters. 
Newer applications would be written with a web services interface and would not need an 
adapter. 
  
The business objects are used by services (applications) loading (fulfilling a service 
request) and offloading (fulfilling a service consumers request) data. How that data is 
acquired, processed, and secured is detailed in the business rules. Leveraging and 
building on the work of the SEARCH process models (business rules), the business rules 
for justice have been abstracted from the data. The where and how of data storage is not a 
concern of the business rule. The business rules are also described in a form of XML so 
that are independent of any operating system or programming language; they are 
abstracted from this level of detail. 
 
The SOA justice system now has data represented as common business objects which are 
acted on by a library of business rules. The business objects are transported in the system 
by messaging software that provides the message delivery mechanism, getting the 
message to the right place, guaranteed delivery, fault tolerance, and security. The 
messaging software provides the needed integration features not found in TCP/IP and 
other networking protocols. 
 
Finally, in the SOA justice system, an orchestration engine is needed to apply the right 
business rules to the right common business objects. The orchestration engine is where 
business rules and workflows can be defined, modified, observed, logged, and secured. 
Orchestration engines are very graphical in nature so that business analysts can readily 
understand the system operations. 
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Figure 5 
 

5.2 The advantages of SOA for Justice Integration 
The full business value of SOA is realized when the applications of the justice 
environment can start to be viewed and used as services. Instead of being concerned 
about the where and how to integrate applications, an SOA changes the view to the what 
and why of how applications (or parts of applications) can be combined (as services) to 
affect the business process. In an SOA environment, the focus is about what you want to 
do, not the how. If the need in a business process is to check for a valid SID, then that 
process (the SID service) can be virtually drag-and-dropped into the process chain to 
make it part of the business process. There is no need to worry about where the SID 
validation program is located or how to write code to access the program; all application-
specific information has been isolated (abstracted) in the SOA. The focus can now be on 
what services are needed to improve the business process. Other benefits of an SOA 
approach to justice integration are: 
 
• New applications can almost be “plugged in”. To bring new applications on-line 

requires determining which common business objects will be used (or added) and 
which business rules will be used (or added). No new interfaces need to be written to 
other applications or data sources, because they are all ready part of the integration 
fabric. If a justice portal or a data warehouse is to be added to the justice 
environment, then those applications can be defined as services on the messaging 
infrastructure. The mapping to the common business objects and business rules these 
new services need are setup in the orchestration engine. In the future, if the portal 
needs to render another new data set, then the common business object with that data 
set is made available to the portal. There is no need to write a data access routine to 
an application’s database to query the data since the application’s data has already 
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been made available in a common business object when that application was brought 
on-line. 

 
• Business processes and workflows can be analyzed, modified and measured. SOA 

catalogs the business processes and business rules. SOA provides that common 
language architecture for data business processes that allows the manipulation of 
business processes across the entire justice system if that is what is desired. With 
SOA, justice practitioners can now truly work on process improvements. 

 
• With easy access to process and workflows, legislative changes can now be processed 

and the impact can be measured and assessed. 
 
• Security and authorization can now be monitored at the business process level, not 

just at the data level.  
 
• SOA provides the architecture for developers to reuse rather than build new. The 

more applications that are enumerated as services, the bigger the library of services 
becomes. The more services available, the less development time, effort, and cost are 
required for new “applications”. Developers can build new applications (services) 
faster and maintenance becomes less a factor since the majority of the services used 
will all ready be well formed and tested. 
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6. Conclusion 
Integration of information is a critical part of the justice information environment. 
Getting the right data and a complete picture of the requested information when it is 
needed is a critical need in servicing the justice community. 
 
Many different data integration patterns have been tried over the years and the evolution 
has lead to a system view of the problem rather than just a data view. The service-
oriented architecture (SOA) that has been proven in the private sector provides the 
capabilities needed in justice integration. These capabilities include the ability to 
integrate large numbers of disparate systems, maintain control on data and business 
processes, and provide the ability to improve, modify, and measure process and workflow 
activities. 
 
There is hard work in implementing an SOA, and that work focuses on the cooperation 
between agencies and personnel. The quality and benefits of the SOA are directly related 
to the completeness of the common business object definitions and business rules. The 
process models of SEARCH and the XML library of GJXDM go a long way to making 
an SOA achievable. However, to make an SOA work in a particular justice environment 
will take participation and validation from the justice practitioners. Only then will the full 
value of implementing SOA to solve the justice information integration problem be 
realized. 
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