
GJXDM
Performance Project

FINAL REPORT

XML Committee Members

GWU Test Committee Members

IJIS Institute Staff

Jim Threatte
Tim Wilson
Ellen Perry
Joe Mierwa
Paul Embly
Ken Gill
John Wandelt

Sergey Kanareykin
Hamzah Zeen-Aldin
Tim Tickel
Ammar Qusaibaty
Dannee Zeedick
Dr. Newton Howard

Paul Wormeli
David Siecker
Samantha Styles

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Table of Contents
Table of Contents... i
Table of Figures... ii
Table of Tables ... iii
Preface .. 1
Acknowledgements.. 3
Executive Summary ... 5
Document Organization .. 11
Methodology ... 12

Goals and Objectives .. 12
Testing Scope.. 13

Test Regimen .. 13
Technology Areas ... 14
Excluded Areas of Measurement .. 15

Test Approach... 15
Level 1 – Platform .. 16
Level 2 – Use Case Scenarios... 17
Level 3 – Sample Test Transactions ... 18
Level 4 – Measurement Phase of Transaction .. 19
Level 5 – Performance Metrics... 20
Interoperability.. 20

Test Environment.. 20
Hardware... 20
Software .. 22

Test Results.. 24
Summary ... 24
General Analysis... 26

Validation.. 26
Platform Findings.. 28

Summary Data .. 29
Detailed Analysis .. 31

Use Case Findings... 37
Use Case Content.. 38

Data Size (Payload) Findings.. 47
Summary Data .. 47
Analysis... 48

Schema Design Findings... 48
Summary Data .. 48

Reduced Tag Names ... 50
Tag Name Length Findings .. 50
Summary Data .. 50

Network Considerations Findings... 52
Summary Data .. 52
Analysis... 53

i
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Where Work Happens Findings.. 53
Summary Data .. 53
Analysis... 55

Lessons Learned (Tricks, tips and hints)... 56
Proposed Next Steps .. 58

Recommendations for Further Research... 58
APPENDIX A – Raw Data... 1
APPENDIX B – Test Results Primer .. 1
Introduction... 1
Test setup and procedure .. 2

Test environment .. 2
Hardware details ... 2
Software details... 3

Test transaction overview ... 4
Changing parameters .. 5
Collecting metrics ... 5
Test procedure... 5

Results spreadsheet .. 7
Format overview ... 7
Test case results layout ... 8

Transaction parameters: the Y axis... 8
Collected metrics: the X axis .. 9

Individual test case information.. 11
Baseline... 11
Inmate Record test case .. 11
Field Report test case .. 14
RAP Sheet test case .. 14
AMBER Alert test case... 15
Arrest Incident Report test case .. 16

References.. 18
APPENDIX C – Acronym List .. 1

Table of Figures
Figure 1 – Test level hierarchy of the GJXDM tests ... 16
Figure 2 – Hardware environment supporting GJXDM testing .. 21
Figure 3 – GTRI proposed document structure ... 27
Figure 4 – Platform comparisons.. 29
Figure 5 – Transaction step analyses ... 31
Figure 6 – Platform analysis with various schemas... 33
Figure 7 – Platform analysis with various data sizes (Payload) .. 34
Figure 8 – Pre-production versus Initial Operating Release schema comparison 36
Figure 9 – AMBER Alert J2EE subschema comparison... 42
Figure 10 – AMBER Alert .NET subschema comparison.. 43
Figure 11 – Comparison between Full and Aggregate schemas.. 43
Figure 12 – Subschema performance as percentage of Full Schema 44

ii
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Figure 13 – Time ratios for major processing steps ... 45
Figure 14 – Processing ratio differences between .NET and J2EE 46
Figure 15 – Processing ratios for .NET and J2EE ... 46
Figure 16 – Data size (Payload) and schema comparison... 48
Figure 17 – Comparison of Aggregate schema versus Flat schema 49
Figure 18 – Performance comparison between standard and reduced tag names............ 51
Figure 19 – Percentages of communication time for reduced tag names 51
Figure 20 – Network bandwidth performance comparison... 52
Figure 21 – J2EE where work happens breakdown... 54
Figure 22 – .NET where work happens breakdown.. 54
Figure 23 – Hardware setup diagram.. 2

Table of Tables
Table 1 – Time measurement and descriptions.. 30
Table 2 – Selected representative sample.. 32
Table 3 – Step comparison of the J2EE and .NET platform performance data 35
Table 4 – Transaction type identification by platform, schema, and data size 44
Table 5 – Transaction type identification by platform and schema 47

iii
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

U.S. Department of Justice
Office of Justice Programs

810 Seventh Street, NW.
Washington, DC 20531

Alberto R. Gonzales

Attorney General

Robert D. McCallum, Jr.
Associate Attorney General

Regina B. Schofield

Assistant Attorney General

Domingo S. Herraiz
Director, Bureau of Justice Assistance

Office of Justice Programs
World Wide Web Home Page

www.ojp.usdoj.gov

Bureau of Justice Assistance
World Wide Web Home Page

www.ojp.usdoj.gov/BJA

For grant and funding information contact
U.S. Department of Justice Response Center

1–800–421–6770

This document was prepared by the IJIS Institute, supported by cooperative agreement number
2003-DD-BX-1104, awarded by the Bureau of Justice Assistance, Office of Justice Programs, and
U.S. Department of Justice. The opinions, findings, and conclusions or recommendations
expressed in this document are those of the authors and do not necessarily represent the official
position or policies of the U.S. Department of Justice.

 The Bureau of Justice Assistance is a component of the Office of Justice Programs, which also

includes the Bureau of Justice Statistics, the National Institute of Justice, the Office of Juvenile
Justice and Delinquency Prevention, and the Office for Victims of Crime.

iv
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Preface
With the development and initial release of the Global Justice XML Data Model
(GJXDM), developers have an opportunity to begin to implement the exchange
of information between law enforcement and justice information systems in
ways never before possible. To the extent that the data dictionary and structure
in the GJXDM are widely accepted throughout the developer and user
community, it will become much easier to send information and to have it
transformed and applied in disparate information systems. This model is clearly
a breakthrough in justice information exchanges.

The GJXDM is also a complex model, particularly with the discipline it imposes
on namespace references and the sophisticated use of inheritance in defining
data relationships. It has developed into a large model containing over 2500 data
elements and complete references to external code tables for completeness.

The model rigorously applies the open standards embodied in the World Wide
Web Consortium (W3C) regarding the precise use of XML.

It should be noted that the design of the GJXDM has always been meant to be a
superset of possible information exchanges, in that only a defined subset of the
model would be used in any given exchange. This was the motivation behind
the development of the GJXDM Subset Schema Generator that was released
during the course of the testing reported on in this document.

The sheer size, complexity, and thoroughness of the GJXDM created a concern
for developers and system administrators regarding the computational and
network resources that may be required to support the exchange of information
based on this model or properly conceived subsets thereof. The past practices
particularly in law enforcement of using cryptic text messages with 3-character
mnemonics to delineate content were an efficient way to transmit information
but made the computer-to-computer exchange of information extremely difficult.
The GJXDM and its XML foundation provide an elegant and economical solution
to this problem of exchange transmission, but at a cost of the overhead added to
the transmission.

As the GJXDM became ready for release in production, many developers and
administrators realized that very little information was available regarding the
real-world performance of properly defined subset schemas. The Office of
Justice Programs (OJP) in the U.S. Department of Justice concluded that
performance testing of the GJXDM was a high priority. The testing would define
the relative impact of using the GJXDM as a basis for creating XML schemas
representing documents exchanged.

1
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

To carry out the testing program, OJP awarded a grant to the IJIS Institute to
conduct performance testing of the initial production release to provide industry
and government developers and administrators with insights into the impact of
using this important new tool. The IJIS Institute created a partnership with The
George Washington University (GWU) to conduct the performance testing under
the leadership of a project committee. The committee consisted of developers
from IJIS Institute member companies and other organizations having specific
interest in the test results (Georgia Tech Research Institute, the engineering arm
that designed the GJXDM; the Global XML Structure Task Force, the practitioner
group guiding the development process; and OJP).

The Project Committee, in conjunction with the GWU research team, developed
the test plan further described in this report and supervised the testing and
analysis of the results which the committee hopes will be helpful to the justice
developer community.

The IJIS Institute is pleased to have been engaged in this research, which we
believe makes an important contribution to the knowledge about this powerful
new tool for information exchanges in the justice field. This work and the many
individual successful implementations of the GJXDM together serve as evidence
of the value of the GJXDM and the methodology for constructing XML schemas
in an orderly and consistent fashion.

Paul Wormeli
Executive Director
IJIS Institute

2
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Acknowledgements
The XML Performance Testing Committee acknowledges the work of many
people in setting the stage for this project and its work. The project has had as its
focus the evaluation of performance of the Global Justice XML Data Model
(GJXDM), the publication of which is a landmark event in criminal justice, setting
the stage for national information sharing without precedent. This project, and
the many ongoing implementations of the GJXDM, would not exist without the
full support of the Bureau of Justice Assistance of the Office of Justice Programs
in the Department of Justice. In particular, the persistent efforts of Patrick
McCreary and Bob Greeves to build a national consensus around information
sharing mechanisms have resulted in this significant national accomplishment.
The leadership of former Assistant Attorney General Deborah Daniels in
sustaining DOJ and other national support for this effort through the Global
Information Sharing initiative of OJP has been the key to the success of this
development from which all criminal justice agencies will derive benefits.

The committee also acknowledges the outstanding work of the computer
scientists at the Georgia Tech Research Institute (GTRI) in building this robust
and powerful model for use by criminal justice agencies throughout the nation.
Their attention to the needs to build a flexible and extensible model that serves
all of criminal justice yet embodies the latest state of the art thinking in exchange
modeling has created a model worthy of replication anywhere. We also pay
tribute to the XML Structure Task Force who so intelligently guided the work of
GTRI in the construction of the model.

The IJIS Institute and the committee are grateful for the support of the companies
who allowed their representatives time to devote to the work of this committee,
including SAIC, TriTech Software Systems, VisionAir, and MTG Management
Consultants, L.L.C.

The committee provides special acknowledgement for the work of Dr. Newton
Howard and the graduate students of the Cyber Security Policy Institute of the
George Washington University who conducted the testing under the guidance of
the committee. Their innovative work in developing testing procedures and
software was a critical contribution to the success of this testing effort.

We particularly thank SAIC for the contribution of equipment used to conduct
the test and to Microsoft for the contribution of system and application software
used in the testing.

All of the members of this committee worked very hard to guide the project and
participate in the development of this report, but special recognition is in order
for Tim Wilson of TriTech. Tim has been a tireless force on this committee that
has contributed well beyond the call of duty. He has stepped in twice to support
the project when it needed additional resource commitment in order to complete

3
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

its tasks. He has invested incalculable personal time in his efforts to extend the
research of technical issues and to dissect areas of specific concern and
investigation. He has provided senior technical leadership working with a major
national corporation in drilling down into the platform performance
discrepancies to address performance discrepancies constructively.
Additionally, Tim has been the "go to" person for the George Washington
University team who helped them solidify their test implementation approach
and provided them with the test baselines they needed in a majority of the areas
of investigation.

James L. Threatte
Chairman
XML Performance Testing Committee
IJIS Institute

And

Vice President, Public Safety
SAIC

4
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Executive Summary
The IJIS Institute was tasked by the Bureau of Justice Assistance (BJA) to test the
Global Justice XML Data Model (GJXDM) to determine its performance
characteristics under various conditions and to provide guidance to developers
concerning best practices for its use. This report provides the results of those
tests and releases to the GJXDM developer community an extraordinary body of
system performance data regarding the performance of GJXDM using “real-
world” transaction scenarios. A variety of hypotheses were tested in order to
address questions concerning the performance of the model when varying such
parameters as architectural structure of schemas and their proper subsets,
volume of data content, local versus remote accessing of schemas, network
speeds, and length of element names (Tag Names). The objective was to
determine recommended approaches to implementation of the model in real
world information technology application environments.

This report provides analyses and findings based on the project team’s
interpretation of the data and makes recommendations concerning best practices
for employing the GJXDM in a production environment. The appendix to this
report contains a repository of raw data that is available in electronic format for
further analysis and findings. As further analysis is performed and as new
findings or refinements emerge, additional tests and updating of this report will
likely be necessary. The IJIS Institute project team has provided a series of
repeatable test scenarios and software testing procedures along with code and
data that can be used to run future tests. Since the testing environment can
remain a constant, evaluating and comparing the performance baseline to future
changes to tools, platforms or the model should be relatively simple.

Due to the number of permutations and combinations of transactions tested, the
raw data output from this report is extremely complex and can be challenging to
comprehend and analyze correctly. The findings and recommendations
presented in this report have attempted to abstract this complexity into higher-
level statements in lay terms that can be comprehended by non-technical
personnel reading and evaluating this report. However, achieving a detailed
understanding of the test regimens and the performance data requires an
examination of the entire performance data set and an understanding of the
precise methods used for the execution of the tests, which will likely require a
significant level of technical expertise.

Testing Methodology - The same hardware, software parsers (.NET and J2EE),
use case scenarios, and transmission media were used for all tests. The approach
was designed to separate the impact of the use of XML itself from the
performance of the GJXDM. No attempt was made to evaluate the difference
between the uses of XML versus non-XML technology (i.e. legacy systems). A
variety of real-world Use Cases (AMBER Alert, Field Reports, Incident Reports,

5
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Inmate Records, and RAP Sheets) were employed. Remote versus Local access to
schemas was tested using the Incident Report Use Case. Performance variance
using reduced element names (Tag Names) was tested using the AMBER Alert
Use Case.

Testing was divided into five distinct phases:

1. Creating Instances where the data source is either a relational
database or a flat file (actual time to load data was not included)

2. Validating the Instances using a software validation tool at the Sending
Server location (back-end server that is normally used to control the
storage of the data)

3. Transmission of Instances – sending the message from the Sending
Server to the Receiving Server

4. Parsing and Validation of Instances using a software validation tool at the
Receiving Server location (front-end server that is the interface to the
user (client).

5. Transformation of GJXDM to a Target Format – (i.e. using an
Extensible Style Sheet Language Translator (XSLT) to format the
data content (payload) for presentation using a Web browser)

It is important to note that when this project was initiated the Subset Schema
Generator developed by the Georgia Tech Research Institute (GTRI) was not yet
completed and available. Therefore, initial emphasis was on testing the entire
data model along with subset schemas that were generated by the test team.
However, as the Subset Schema Generator became available it was added into
the testing regimen and resulted in findings that underscore the importance of
operating with appropriately structured Schema Subsets of GJXDM rather than
using the entire model during production operations or using poorly constructed
subschema.

Testing Structure and Results - Testing structure for the project was divided
into five categories:

1. Varying the Architectural Structure of Schemas and Subset Schemas -
Each scenario tested three different schemas with data content
being held constant.

a. Full GJXDM and all of its associated Proxy Schemas

b. A Typical Partial Subset Schema containing only elements
required for the Use Case with Object Hierarchy included

c. A Minimum Subset Schema containing only elements
required without Object Hierarchy being included and
eliminating unused code tables.

6
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

The test results concluded that the size and complexity of the model and the
schema design have a significant impact on performance in a production
environment. The results showed that validation is the critical consumer of time
and that its latency is a function of overall depth and breadth of the data model’s
complexity. This argues for minimizing the use of validation during production
mode once testing has established the integrity of the application. However, in
situations where front-end and/or back-end validation is deemed essential,
employment of hardware accelerators (sometimes referred to as XML
Appliances) can be employed at modest cost to eliminate any degradation of
performance when conducting on-line validations during production use. Such
accelerators employ firmware for parsing, validation, and authentication
management. They can reduce elapsed time by 100-fold even with use of the full
Schema (significantly less than one second of elapsed time).

2. Varying the Data Content (Payload) - Each scenario tested three data
content variations. The Typical Partial Subset Schema was
employed and held constant for all of these tests.

a. Minimal Data Content (only mandatory fields)

b. Typical Data Content (for selected Use Cases)

c. Large Data Content (all possible fields from the full schema
that could be associated with the Use Case)

The test results concluded that data content does not appear to have an
appreciable impact on performance.

3. Varying access to the Schemas and Subset Schemas - Two schema
access approaches were tested.

a. Local Access (schemas in same Namespace as Instances)

b. Remote Access (schemas called remotely from Instances)

The test results concluded that there is a significant negative impact when
referencing schemas or subset schemas from remote locations.

4. Varying the speed of the Network - Various network speeds were
tested ranging from high to low bandwidths.

a. 100 Megabits per second

b. 10 Megabits per second

c. 56 Kilobits per second

d. 9,600 bits per second

The test results concluded that network speed does not appreciably influence
performance until bandwidth is reduced to 9,600 bits per second. This has
significant implications for wireless applications since few commercial radio

7
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

networks offer more that 9,600 pits per second. However, higher bandwidth
wireless applications should have no problem using GJXDM.

5. Reducing the length of Element Names (Tag Names)

a. GJXDM Tag Names that employ ISO 11179 and other
standards for increasing interoperability

b. Shortened Tag Names (3 digits)

The test results concluded that communication time was significantly impacted
when employing the longer Tag Names. However, this does not always affect
total processing time especially when communication time is a small percentage
of total transaction time. Reducing the length of Tag Names tends to obscure the
semantic meaning of the data and significantly reduce the potential for
interoperability. This implies that the cost of reducing the Tag Names outweighs
the benefits of improved execution time.

Other Findings
 Increasing the complexity of the Data Model tends to increase the time
required for validation.

 Validation of XML instance documents consumes a significant portion of
transaction time. Validation latency is mostly the result of overall depth and
breadth of the data model’s complexity. This was proven by comparing the
time to validate using the pre-release version of GJXDM to the operational
version.

 Use of the full GJXDM for validation of instances in an operational
environment is not feasible unless a hardware accelerator (XML Appliance) is
employed. Therefore, the Subset Schema Generator should be used to
develop appropriate schemas that can be validated more efficiently. In
addition, once application integrity has been verified, the validation function
should be disabled for operational use.

 The .NET parser performance was orders of magnitude slower than the J2EE
parser performance for all transaction types, categories, and variations during
validation. Its design appears to have been oriented to use of Data Type
Definition (DTD) standards rather than being optimized for use with XML
Schemas. However, the .NET parser can be faster in discrete transaction
phases. When .NET is in full compliance with W3C standards and is
optimized to support complex schemas it should be competitive with J2EE
use.

 Generation and use of proper Subset Schemas significantly improves the
performance of GJXDM. The testing shows that this benefit is proportional to
the size of the model and the appropriate design of the Subset. Performance
degrades linearly as size increases. The Subset Generator was found to
produce effective and efficient Subset Schemas. However, it is possible to

8
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

spawn a Subset Schema with worse performance characteristics than the full
GJXDM if adequate attention is not paid to the design of the Subset Schema.

 Due to the complexity in depth and breadth of GJXDM, many conventional
off-the-shelf software development and integration tools available during
testing were not up to the task of working with the GJXDM. As technology
changes rapidly and dramatically, these problems may be alleviated, but care
must be taken in the selection of tools for use in an operational mode.

Best Practices
 Minimize the use of the validation function in production mode. Use it when

initially testing exchanges for integrity, but disable it when schemas are
moved into production mode.

 Minimize the use of the Document Object Model (DOM). It increases
transaction time significantly. Time to load the document into DOM was
significant when tested. There are better methods for performing common
data processing tasks. (For advice on this topic, see
http://www.xml.com/pub/a/2001/11/14/dom-sax.html?page=1).

 Use the Subset Schema Generator to produce appropriately designed Subsets
rather than employ the full GJXDM.

 Load elements, objects, and whole files selectively on demand rather than
load them all at once.

 Subset Schemas should maintain the list of elements, types, and attributes in
the exact same order as the full GJXDM. This decreases parser time.

 Declare Subset Schemas in GJXDM Namespace. Do not reference remote
proxy schemas. Re-use proxy schemas by inclusion in the Subset Schema file.
Most parsers do not handle that type of deployment with acceptable
performance.

 Choose parsers carefully. Since W3C standards leave optimization mostly up
to the parser implementation, it can have a significant affect on performance.

 Do not use GJXDM for low bandwidth wireless applications. It is not
intended for use in managing internal communications within a “closed
system” environment such as mobile computing when low bandwidth is the
default environment.

 Use a hardware accelerator (XML Appliance) if validation is required during
operational use and if use of the validation function is likely to decrease
performance (this frequently depends on the size and complexity of the
Subset Schema generated).

Recommendations for Further Research - Consideration should be given to
initiating further research concerning the use of GJXDM. The following are some
suggestions for that purpose:

9
http://www.ijis.org/

http://www.xml.com/pub/a/2001/11/14/dom-sax.html?page=1

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

 Explore the effects of various levels of data model complexity on
performance. Use the results to provide guidelines for building constraint
schemas.

 Organize User Groups to share experiences that can lead to improved
approaches to Best Practices.

 Explore the potential for splitting the data model into sub components. There
is some evidence that parsers may be better at optimizing if they only have to
operate on segments that can be loaded dynamically.

 Accelerate the development of information exchange package descriptions
that will allow models that be used as a starting point for building exchanges.

 Replicate performance testing on actual exchanges to evaluate alternative
ways to improve schema construction.

10
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Document Organization

This report contains four main sections and three appendices. The sections and
appendices are named, described, and organized as follows.

 The Methodology section describes the research goals and objectives, details on
the scope of the testing, and the test approach and environment.

 The Test Results section provides the findings, summaries, analyses, and
graphic depictions for the tests described.

 The Lessons Learned section provides the comments, tricks, tips, and hints
captured during testing.

 The Proposed Next Steps section summarizes the Committee recommendations
for further research.

 Appendix A provides the raw data from the GJXDM performance testing in
Excel worksheets.

 Appendix B is the GJXDM Performance Testing Primer that describes the
testing set-up and procedure followed to obtain the testing results and a
primer for interpreting the results.

 Appendix C provides a list of acronyms used in this report.

11
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Methodology

Goals and Objectives
The GJXDM Performance Project has many goals and objectives. The goals and
objectives in the following paragraphs are in priority order.

This project will result in a written report detailing information regarding
GJXDM performance testing results. In addition, the report will make
recommendations to the practitioner community for implementing the GJXDM.

The project will provide useful information to the practitioner community on the
performance of the GJXDM using real world scenarios and data. Performance
measurements will be categorized into the following areas of investigation using
both the full GJXDM model and only those constructs required by a given event
or document (succinct definitions). These include the creation and validation of
instances, validation and parsing of instances, communications or transmission
of instances, and transformation of instances (e.g., XSL transformations or DOM
tree manipulations).

The project shall distinguish between the performance impact of GJXDM, XML,
and the data transmission network.

The project shall define a variety of "use cases" that describe the categories of
usage in the real world. Use cases shall be an integral part of the performance
baselines since they provide the context that would guarantee future
comparative consistency.

The project shall evaluate content and structure separately. By testing with
multiple element name lengths and content volumes, better perspective is
available of the overhead imposed by XML and by the GJXDM naming
convention.

The project shall evaluate the impact of abstraction.

The project shall be flexible and dynamic in its testing approach.

The project shall identify performance measurement and tuning parameters, to
the degree possible, that will define and document the optimal performance
tuning parameters.

The project shall utilize a variety of use case scenarios in order to provide
information regarding performance characteristics that include reliability,
efficiency, high functionality, security, and robustness.

12
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Testing Scope
The testing scope identifies what is tested and what is not. The following
questions define the GJXDM testing scope and seek to answer specific field
performance concerns on standard computer conditions and configurations.

The testing of the GJXDM will seek to answer the following questions:
 What are the performance implications of migrating from the JXDD 3.0.0.0 pre-

release version to the GJXDM 3.0 initial operating release?
 What are the performance variances when the same transaction uses a variety of

data content sizes?
 What are the performance implications of using the full GJXDM versus using sub-

schemas?
 What are the performance implications of using the long tag names defined by

GJXDM?
 What are the performance variances when GJXDM schemas are retrieved from

different locations (e.g., local vs. external site)?
 During the life of GJXDM transactions, what is the percentage of the time the

transaction expends at key processing steps?
 What “lessons learned” should the test team share with practitioners that will assist

them in selecting tools and configuring their technology environments to optimize
the GJXDM?

Test Regimen
A thorough and well-defined regimen of testing and evaluation puts the GJXDM
through its paces to assure that user requirements are satisfied. The development
of the test regimen has taken into account the following testing scope
considerations:

1. What can reasonably be measured (e.g., elapsed wall clock time, CPU time,
memory usage, cache size usage, workspace usage, disk storage requirements,
message transmission time, message transmission length, etc.)?

2. Determine what measurements are relevant for what we are trying to
accomplish and eliminate anything of insignificant value (e.g., required
storage).

3. Develop use cases and testing scenarios that select representative events that
vary in complexity, documents, and structures.

4. Identify content and create “standard” test instances. Content in the
“standard” tests should be representative, but consistent and minimal, so the
test measures the processing of the schema and tag variables.

5. Test a variety of content volumes in order to determine how performance
correlates to the content size.

6. Test on multiple technology platforms to the degree possible to eliminate test
platform variability so that the GJXDM is tested and not the tools.

13
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

7. Test the full GJXDM and subsets of the full element definitions (i.e., sub-
schemas).

8. Test the same content with more succinct tag names. Be extreme and use the
shortest tag names (i.e., the NCIC standards: <nam>, <dob>, and <soc>).

9. Render a set of HTML documents using at least two XSLT engines.

10. Do "positive" testing to prove or disprove the theory that the GJXDM model is
usable in its current form and under what circumstances. The circumstances
will identify the type of system requirements to make using the model most
efficient.

11. Perform testing over a managed IP network with a repeatable and predictable
degree of infrastructure that ensures adequate bandwidth and throughput at
all times, in order to control the impact of the network infrastructure on the
performance test results.

12. Recognize and capture any additional overhead imposed by the GJXDM
protocol, separated from the standard XML environment.

Technology Areas
The main areas tested occurred in three measurable technology areas. These
areas are the back-end server and the front-end server.

Back-End Server
The performance characteristics of the back-end server were thoroughly tested
and evaluated. The data captures a series of specific metrics that measure all
actual performance characteristics of a typical user interaction. The performance
testing measured the following back-end server functions:

 Transformation of the raw data into a valid GJXDM instance that is ready for
transmission (if applicable). The time required to extract the data from the data
source is not measured.

 Validation and parsing of the instance before transmission.
 Processing of the instance using representative business logic specific to the kind of

transaction (if required).

Transmission of Information
The transmission of information measures from the time that the one server
sends the information to the other server until the time that the other server has
received all of the data. In addition, a number of other measurements captured
will relate to the representation of the data on the network.

Front-End Server
The performance characteristics of the front-end server and client were
thoroughly tested and evaluated. The data gathers a series of specific metrics
that measure all actual performance characteristics of a typical user interaction.

14
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

These actual performance measurements were incorporated along with the back-
end server and transmission of information metrics in order to form a metric that
will represent the user’s perception of performance. The front-end server and
client performance tests measured the following front-end server functions:

 Parsing and validation of instances on the front-end server (e.g., an XML request for
data to send from the back-end server).

 Processing of the instance using representative business logic specific to the kind of
transaction.

 Transformation of the instance for display on a client workstation (if required).

Excluded Areas of Measurement
The GJXDM testing regimen did not measure the relative efficiency of existing
data exchange methods when compared to XML and the GJXDM. The value
proposition of using XML must be acknowledged and appreciated based on its
own merits. Practitioners that migrate from a legacy environment, consisting
mostly of unstructured text transactions, to any XML environment will have
noticeable impacts in the performance of their current systems. The
interoperability gains from using XML and the GJXDM must be appreciated and
any reduction in “as is” system performance must be dealt with as part of an
overall optimization strategy that may require the restructuring of how data is
processed.

The GJXDM testing regimen did not measure the time required to extract data
from data sources, such as a text or relational database in order to eliminate the
variability of alternative methods of storing data. For example, the design of a
relational database schema can be extremely efficient or extremely inefficient.
The purpose of this test regimen is to test the performance of GJXDM-based
transactions, and not the efficiency of any data storage method (e.g., object-
oriented databases) or extraction method, which should be the topics of a
separate study.

Test Approach
This section describes the approach for executing the test plan. It categorizes the
testing regimen as a hierarchy and provides a detailed description of the items in
each level of the test hierarchy.

The following diagram depicts the test level hierarchy.

15
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Figure 1 – Test level hierarchy of the GJXDM tests

Testing activity is organized in five test levels. For each test level, one or more
sequential cycles execute.

Level 1 – Platform
Level 1 of the testing hierarchy consisted of three operational platforms –
Microsoft, J2EE, and XML Appliance.

Microsoft
The Microsoft platform consisted of servers operating on the Microsoft Windows
development and deployment platform. This included Windows 2000 Advanced
Server and Microsoft Internet Information Server (IIS) 5.0. The test code and
operational environment were developed using the Microsoft .NET Framework
1.1 Toolkit.

J2EE
The J2EE platform consisted of servers operating on a Linux development and
deployment platform. This included the RedHat Linux 9.0 operating system and

16
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Tomcat Java-based Web server software. The test code and operational
environment was developed using version 1.4.2 of the Java Software
Development Kit (SDK) and the Java Web Services Developer Pack 1.3.

XML Appliance
The XML Appliance platform consisted of the Microsoft platform and J2EE
platform (each described above) with the addition of a Sarvega XPE 2000 XML
Guardian Gateway appliance. Processing text-based XML is CPU-intensive,
typically consuming 45% to 80% server cycles for compute-intensive operations
such as XSLT, Schema Validation, and XML Security algorithms. This makes
scaling XML-based Web services expensive and creates business-impacting
latencies. Sarvega’s XML Appliance utilizes a highly optimized binary data
stream that solves these XML processing problems.

Shared Resources for All Platforms
The Microsoft, J2EE, and XML Appliance test platforms shared common client
and the network environment resources.

Client
The test environment client used to interact with the testing interface was a
laptop running Windows 2000 Advanced Server operating system with Internet
Explorer 6.0 Web browser.

Network
A created network environment isolated the test environment from the external
networks. This guaranteed repeatable network performance.

Level 2 – Use Case Scenarios
A variety of “use case” operational scenarios defined what the functional and
data items were for each test. Use case scenarios run under each of the Level 1
platforms. The selected use case scenarios leverage existing assets such as
schemas and XSLT.

The following is a list of the use case scenarios defined under Level 2.
 AMBER Alert
 Field Report
 Los Angeles County Arrest/Incident Report
 Inmate Record
 Report of Arrest and Prosecution (RAP) Sheet
 Reduced Tag Name (based on one of the other test cases)

 Note: This special test reused the existing AMBER Alert test in order to address
the performance question: How much does it matter if I reduce the length of the
GJXDM tag names?

 Schema Special Test

17
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

 Note: This special test reused the Incident Report test in order to address the
performance question: Does it matter whether the schema is obtained from a
local or remote location?

Level 3 – Sample Test Transactions
A variety of sample test transactions were executed for each use case scenario. A
brief description of each sample test transaction follows below:

Schema Variation Testing
For each test scenario, we established three different GJXDM schemas to be
tested – a full schema, a partial Subschema and a minimum Subschema (for some
test cases, all three variations may not applicable). In order to minimize the
complexity of this test, each of the schema tests used the “Typical Content” data
as defined below. With this approach, the data content size holds constant and
the performance impact of schema variations were the focus of the test. A
definition of each of the three schema variations provides further detail below.

 Full Schema Sample Transaction - This transaction utilized the full GJXDM and
all proxy schemas.

 Partial (Typical) Object Subschema Sample Transaction - This transaction utilized
a subset schema of the GJXDM tailored for the use case requirements. The
subset schema included only the elements required with the object hierarchy
for the reference document based on the domain of the use case.

 Bare Minimum Subschema Sample Transaction - This transaction utilized a
subset schema of the GJXDM tailored for the use case requirements. The
subset schema included only the elements required without the object
hierarchy of the reference document based on the domain of the use case.
This subschema eliminated unused code tables.

Data Content (Payload) Variation Testing
For each test scenario, we established three different data contents to be tested –
minimal, typical, and large. In order to minimize the complexity of this test, each
of the data content tests used the partial object subschema as defined above.
With this approach, the GJXDM schema holds constant and the performance
impact of data content variations were the focus of the test. A definition of each
data content variations is below:

 Minimal Content Sample Transaction - This transaction included only the
mandatory fields. A minimal instance contained content only for those
elements that are required to make a valid transaction. An example of this
approach is a RAP sheet instance that provides only the required person
information and a single arrest event.

 Typical Content Sample Transaction - This transaction included the typical fields
and typical complexity as it applies to the domain of the use case. A typical

18
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

instance contained content for those elements in the minimal instance as well
as some commonly occurring elements. In this case, a RAP sheet instance
would contain the all data “typically” provided regarding person information
and two arrest cycle occurrences including the related court conviction and
supervised custody status.

 Large Content Sample Transaction - This transaction included all possible fields
from the GJXDM schema. Where the schema allows for multiple occurrences
or repeating data, the test transaction provided more than two (each) of those
multiple occurrences or repeating data where applicable. A large instance
contained content for those elements in the typical instance as well as a
number of recurring structures. For example, a RAP Sheet instance would
contain all data elements allowable in the person information as well as five
arrest cycles including the related court convictions and supervised custody
status.

Level 4 – Measurement Phase of Transaction
For each sample transaction that executes under Level 3 of the testing hierarchy,
the performance measurements captured five distinct phases of the life of the
transaction. Considering that the transaction is “born,” “lives,” and finally
“dies,” each of these five distinct phases measured the life of the transaction.

Creating GJXDM Instances
This phase of the transaction is where the system creates a valid instance for
transmission. The data source is in a relational database or a flat file based on
test team preference. Time required to pull the data from the data source is not
measured.

Sending Server - Parsing and Validation of Instances
This phase of the transaction uses an XML validation tool or library to validate
the instance against the transmission schema at the sending server (depending
on the use case, either the back-end or the front-end server may be sending data).

Transmission of Instances
This phase of the transaction sends the message via the network from one server
to the other server.

Receiving Server - Parsing and Validation of Instances
This phase of the transaction uses an XML validation tool (or API call) to validate
the instance against the transmission schema at the receiving server.

19
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Transformation of GJXDM to Target Format
This phase performs and measures the transformation/manipulation phase of
the transaction, such as when an XSLT stylesheet is used to format the payload
for presentation on a Web browser.

Level 5 – Performance Metrics
Performance metrics capture specific measurement phases for each transaction
executed under Level 4 of the testing hierarchy. The following is a list of the
performance metrics captured under network speeds of 100Mb, 10Mb, 56Kb, and
9.6Kb:

 Wall clock time between “milestones”
 Ratio of tag name bytes to total payload (actual data) bytes
 CPU time
 RAM usage
 Total transaction length
 On the port used for sending, the number of bytes transmitted
 On the port used for receiving, the number of bytes received

Interoperability
The testing project followed the interoperability rules as defined by the Global
XSTF. For a copy of these rules, see http://it.ojp.gov/topic.jsp?topic_id=138.

Test Environment
The Cyber Security Policy Research Institute (CSPRI) laboratory, at the George
Washington University (GWU), Foggy Bottom campus, located in Washington,
D.C., performed all the required testing for this project.

This section provides a detailed description of the hardware and software used
to support testing.

Hardware
This section defines and describes the hardware environment used to conduct
the required testing of the GJXDM.

Figure 2 depicts the hardware environment the CSPRI laboratory used to
conduct the GJXDM testing.

20
http://www.ijis.org/

http://it.ojp.gov/topic.jsp?topic_id=138

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Sending Server
.NET on Windows 2000 Server and J2EE/Web

Services on Red Hat Linux 9.0

A B C D E F G H
SELECTED

ON-LINE

Network Switch

Router/Network Simulator
OpenBSD with packet filtering,

DHCP, and DNS. Web server for
caching JXDD schemas.

Configurable bandwidth settings for
incoming and outgoing connections

Development Stations

Client Computer(s)
Any Operating System with a Web Browser

H
TM

L
&

 A
SC

II

XML Data

Sending Server
.NET on Windows 2000 Server and J2EE/Web

Services on Red Hat Linux 9.0

Internet

XML Appliance

Figure 2 – Hardware environment supporting GJXDM testing

Server 1 (Back-end server)
Back-end server stores information and can receive updates or respond to
specific information requests. The IJIS Institute and its industry members
provided a back-end server for this project. The computer has a 366MHz
processor, 256MB RAM, and is configured as a “double-booted” computer that
allows either the Windows 2000 Advanced Server or the Red Hat 9.0 Linux
operating system to be running.

Server 2 (Front-end server)
Front-end server provides user access to the system. It runs a Web interface that
the client interacts with, and communicates with the back-end server when there
is an information request or update. The computer has a 450MHz processor,
256MB RAM, and is configured as a “double-booted” computer that allows
either the Windows 2000 Advanced Server or the Red Hat 9.0 Linux operating
system to be running.

21
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Network Simulator (router)
Network simulation takes the guesswork out of network management and
device design, ensuring better visibility into performance, as well as greater
network uptime and reliability. A router is a device that determines the next
network point to which a packet should be forwarded toward its destination.
The router connects at least two networks and decides which way to send each
information packet based on its current understanding of the state of the
connected networks. The computer has a 233MHz processor and 128MB RAM.
The CSPRI team equipped the machine with four network interface cards to
interconnect the two servers and the client machine, and provide them with
access to the Internet (which can be disabled during the test runs to ensure
quality of service).

Client Computers
In computing, a client is a system that accesses a service on another computer via
a network. The IJIS Institute provided one client computer for this project. It
was a Dell Latitude C600 laptop computer with a 1.2GHz processor and 256MB
RAM.

Network Switch – 100Mbps
A network switch is a computer-networking device that connects network node
and/or segments. This switch provided connectivity for additional network
nodes (e.g., development or monitoring stations, or the XML appliance) while at
the same time isolating the test environment from outside influences that would
affect the predictability of network performance. It was a Netgear FS-608 8-port
10/100 switch.

XML Appliance
The XML Appliance used was a Sarvega XML Guardian Gateway appliance.

Software
This section defines and describes the software environment and tools used to
conduct the required testing of the GJXDM.

Server 1 (Back-end server)
When operating under the Windows 2000 Advanced Server environment,
Microsoft .NET Framework and SDK 1.1 were used. When operating under the
Red Hat 9.0 Linux environment, the Sun Java SDK 1.4.2 development
environment and the Java Web Service Developer Pack 1.3 were used, with the
XML parser upgraded to Xerces-J 2.6.2 (as opposed to the “stock” version 2.3.0+
which came with the pack).

22
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Server 2 (Front-end server)
When operating under the Windows 2000 Server environment, Microsoft .NET
Framework and SDK 1.1 were used. When operating under the Red Hat 9.0
Linux environment, the Sun Java SDK 1.4.2 development environment and the
Java Web Service Developer Pack 1.3 were used with the XML parser upgraded
to Xerces-J 2.6.2 (as opposed to the “stock” version 2.3.0+ which came with the
pack).

Network Simulator (Router)
This configured server operated the OpenBSD 3.5 operating system with packet
filter (pf) that allows bandwidth management. OpenBSD is a freely available,
multi-platform, UNIX-like operating system. Network analysis tools, such as
tcpdump, reported on network characteristics and performance. This allowed
modeling of system performance based on the bandwidth of the network.

Client Computer
The client computer had the Microsoft Windows 2000 Advanced Server
operating system installed. It utilized the Internet Explorer 6.0 Web browser to
interact with the Web interface and display information assembled by the front-
end server.

XML appliance
The Sarvega appliance comes with a specialized development suite (XESOS
Studio) that allows easy configuration of the XML workflows and schema
uploads. Sarvega XESOS Studio version 1.5 for XESOS 4.6 system software was
used for appliance testing.

23
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Test Results

Summary
The test results showed that the two largest time components were XML validation and
DOM processing. These two tasks make up roughly 99% of the transaction time.
Most of the test cases utilized XSL transformations for rendering and did not
include a DOM processing step. The test harness, a testing tool, was comprised
of a test driver and a test comparator, which measured the processing time of a
transaction consisting of a set of steps consistent with common XML tasks. For
these test cases, the schema validation consumed the vast majority of the
processing time.

The tests confirmed the benefit of using a subset schema, because it decreases the latency
time of the validation step, when compared with using the full GJXDM reference schema.
The time measurement benefit was proportional to the amount of the data model
included in the subset schema. As the subset schema increases in size toward the
full data model, the expected performance improvement from using a subset
schema decreases.

As an example of the use cases tested, the Incident Report offered the highest
return on investment for utilizing a subset schema in place of the full GJXDM.
The validation performance of the subset schema for incident was 47% of the full
GJXDM reference schema. It is important to note that one variant of the AMBER
Alert subset schema incorporated 80% of the full reference schema. With this
subschema, the full transaction performance only yielded a 20% improvement.
The relationship between the size of the subset schema and performance appears
to be linear with the upper bound set by referencing the full GJXDM schema.

Production implementations of the GJXDM must carefully consider the performance
impacts of XML validation. Due to processing overhead, large models, such as the
GJXDM, rarely conduct validation during normal transactional processing and
therefore validation benchmarks do not correctly gauge the practical
performance of real solutions built on .NET or Java. In normal production
scenarios, smaller sections of the model are used or validation is disabled entirely
to avoid a negative performance impact. The benchmarks demonstrated that
neither of these two environments delivered performance characteristics that
would be usable in a production environment.

Currently available off-the-shelf validation tools validate at the point of both
origin and reception, which is not practical, regardless of the platform. Many
organizations will choose to turn off validation, upon completion of the testing,
so the overhead generated by the use of the GJXDM is negligible.

As an alternative, new devices have recently reached the market that are capable
of off-loading the parsing and validation work from the Web server to a “plug
and play” appliance. These devices conduct parsing and validation in firmware

24
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

and frequently include other functions such as authentication management.
XML Appliance platform tests conducted used a device made by Sarvega. With
this device the elapsed time for parsing, validation, and transformation was
reduced 100-fold with full validation against the GJXDM. The XML Appliance
completed the total transaction in less than 1 second.

The data content size of the transaction does not appear to have an appreciable impact
on performance. Several of the test cases provided data payloads of various sizes
in order to compare theories regarding the influences to the overall performance
of the XML parser using the GJXDM data model. In addition, the tests indicate
that data size has a minor influence of the magnitude of the XML validation and
DOM processing. From the limited number of data points, it appears that the
relationship of data size and performance is more logarithmic than linear.

“Flattening” the data model, by collapsing the inheritance and complex type trees,
actually degrades overall performance. This approach requires that the entire file is
loaded all at once, instead of on demand, which appears to negate any
performance gains offered by XML parser optimization.

Reducing the tag names within the data model and the instance yields a measurable
improvement in performance depending on the test platform. However, given that this
idea violates the rules of use for the GJXDM reference schema, obscures the
meaning of the content, and significantly impacts interoperability, it is likely that
the cost of this technique outweighs the performance benefits.

The speed of the network does not appreciably influence performance until the bandwidth
was constrained to 9,600 bps. All of the executed test cases measured the effects of
network bandwidth on overall performance.

Referencing the full GJXDM from a remote location has a negative impact on
performance. One variation on the network testing had the instance schema
referencing the full GJXDM from a remote location. This test added the
overhead of pulling the full data model across the provided network link to the
overall transaction time. It is important to note that the data model size is nearly
2Mb, which may significantly affect a majority of network bandwidth points.

The test results consistently show a significant difference in observed performance
between the tested .NET and J2EE XML parsers. The Microsoft .NET XML parser
(managed code version) was determined to be significantly slower than the J2EE
parser (Xerces-J 2.6.2) for most tests. This difference is primarily attributed to the
differences in the schema parsing behaviors; it appears that the Microsoft .NET
parser always parses and loads the entire schema, while the Xerces only operates
on the schema elements actually used in the instance.

Overall, the test results confirm several key best practices for utilizing the data
model and illustrate the effects of several suggested changes to the data model.
The results indicate several suggestions for further research and offer numerous
lessons learned.

25
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

General Analysis

Validation
The test cases demonstrated that a significant portion of the transaction time was
consumed by validation of the XML instance document against either the
GJXDM reference schema or a subset schema.

The test data show performance improvements by substituting a subset schema
in place of the full GJXDM reference schema.

Validation time effects appear in relation to the overall size and complexity of the
data model or subset schema. The test cases included scenarios utilizing the
GJXDM 3.0 initial operating release as well as the pre-release JXDD 3.0.0.0
version. It is important to note the significant increase in validation time when
comparing pre-release to production GJXDM. Further research suggests this is
the result of increased complexity in both depth and breadth in the production
schema. The production GJXDM schema includes several additional levels of
inheritance as well as a number of new and expanded objects.

The test data suggests that the XML parser(s) provide some level of optimization.
This optimization appears to yield better results when elements, objects, and
whole files are loaded on demand rather than all at once. This appears to explain
why flattening the data model, by eliminating inheritance, and aggregating the
subset schema and instance schema into a single file degrades performance. This
idea also supports the GTRI suggestion for deploying the subset and instance
schema. Figure 3, from the GTRI developer’s workshop, illustrates the proposed
document structure:

26
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Lo
ca

l n
am

es
pa

ce

Figure 3 – GTRI proposed document structure

The research also suggests some key best practices adopted by the GTRI team
have important performance implications:

 The subset schema must maintain a list of elements, types, and attributes that
appear in the same order as the full GJXDM. Several of the test cases
including Incident Report maintain the order of elements within types as
required, but did not maintain the same ordering of element, type and
attribute definitions as the full GJXDM. This resulted in a parser-dependent
increase in validation times.

 Declare the subset schema in the GJXDM namespace. It should not reference
the proxy schemas. The subset schema should reuse the proxy schemas by
inclusion into the subset schema file.

 References to the actual proxy schemas resulted in loading multiple copies of
the schema elements. The performance degradation results from the inflated
size of the subset schema in memory.

27
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Platform Findings
As described fully in the Methodology Section of this report, a variety of test
transactions were constructed and executed in order to observe a number of
characteristics of real world GJXDM transactions. Each test transaction executed
on two platforms identified as the J2EE platform and the .NET platform.

The J2EE platform consisted of the Sun Microsystems Java Software
Development Kit (SDK) to develop the test applications, which were operating
on Red Hat Linux Version 9.0. A Java Web Services Developer Pack (JWSDP)
version 1.3 and Java API for XML Processing (JAXP) implemented the data
exchange. JAXP was upgraded to include the 2.6.2 version of the Xerces-J XML
parser, which includes better support for Schema validation. The JWSDP’s
distribution of Tomcat Version 5.0 Web server is the servlet container for the Java
test applications.

The .NET platform consisted of C# test applications developed using the
Microsoft .NET Framework 1.1 operating on Windows 2000 Advanced Server.
The front-end and back-end server applications ran on Microsoft Internet
Information Server (IIS) version 5.0. ASP.NET was used to develop the Web
interface on the front-end server. Both servers used .NET Web Services API
classes to communicate.

The XML Appliance platform was essentially an add-on component for both the
Microsoft platform and J2EE platform. The XML Appliance was incorporated
with each platform and was configured to perform XML functions that
previously had run on the front-end and back-end servers of both platforms. The
appliance was used in proxy mode, i.e., the XML traffic was directed at the
appliance instead of the ‘real’ recipient, and the appliance would only pass the
XML content through to the recipient if it was valid, otherwise an error was
generated and transaction aborted.

The Platform Test evaluated the differences in performance observed between
the two platforms when running the same kind of transactions. The primary
findings regarding the platform tests are:

 The J2EE platform is overall notably faster than the .NET platform for all
transaction types, categories, and variations.

 The .NET platform is faster in many of the discrete transaction phases, but not
during the validation phases. The validation phase of the transaction is a
notable performance bottleneck for .NET.

 The XML Appliance platform demonstrated that a significant improvement
in performance could be achieved by off-loading XML tasks from either the
Microsoft platform or the J2EE platform to a purpose-built device.

28
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Summary Data
This section summarizes the data that supports the platform findings. A detailed
analysis of the data follows.

Transaction Time
Figure 4 depicts the total transaction time in seconds of a representative variety
of transactions. This figure has grouped the XML Appliance platform to the left,
J2EE platform in the center, and the .NET platform to the right of center. The
intent of this graphic is to depict that the exact same transactions executing on
the XML Appliance platform perform much more efficiently than the J2EE
platform and that the J2EE platform perform notably faster than on the .NET
platform. Beginning at the far left of the diagram, the total transaction time for
the transaction identified as “XMLA-JAI” reports approximately 15 seconds. The
transaction identified as “J2EE-JR1” reports 402 seconds. The transaction
identified as “.NET-NR1” is the .NET platform version of this same transaction.
It reports a total transaction time of 2,466 seconds.

The supporting data represented by this figure buttresses the finding that an
XML Appliance is superior in performance and the J2EE platform is notably
faster than the .NET platform for all transaction types, categories, and variations.

Platform Comparison

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Platform

Se
co

nd
s

Actual 14.81 1.2 402.1 670.9 442 649.7 448.5 674.7 649.7 702.4 2466 4151 2408 2675 2367 2700 2675 2705

XMLA-
JA1

XMLA-
NA1

J2EE-
JR1

J2EE
2-JS1

J2EE
3-JS2

J2EE-
JS3

J2EE-
JS4

J2EE-
JD1

J2EE-
JD2

J2EE-
JD3

.NET-
NR1

.NET-
NS1

.NET-
NS2

.NET-
NS3

.NET-
NS4

.NET-
ND1

.NET-
ND2

.NET-
ND3

Figure 4 – Platform comparisons

Transaction Stages
During the execution of each transaction, various stages of the transaction
captured and recorded performance measurements. A defined time
measurement for each of four steps provided a clear definition in conduction
these analyses. A definition of each of these four phases follows in Table 1:

29
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Table 1 – Time measurement and descriptions

Time
Measurement

Description

Step 1 Sending server request validation time
Step 2 Sending server GJXDM instance transformation time
Step 3 Receiving server GJXDM instance transformation time
Step 4 Receiving server request validation time
Total

Communication
This value is calculated time in order to represent all of the data
communication time associated with the transaction

Total Overhead This is the receiving and sending server overhead time which
includes the server setup and startup time for each transaction

Figure 5 depicts the percentage of time spent executing each of the testing
phases, using the same transactions as Figure 4 on the J2EE and .NET platforms.
This figure has grouped the J2EE platform data to the left and the .NET platform
to the right.

Beginning at the far left, the transaction identified as “XMLA-JA1”depicts the
fact that the vast majority of time is spent during the overhead processing step.
It is important to note that due to the high speed of this transaction, this total
setup time is just over one second. The transaction labeled “XMLA-NA1” spends
the vast majority of its time in the communication phase of the transaction. Also
noted, due to the high speed of this transaction, was this total communication
time is under 1/10th of a second.

Moving right to the first J2EE platform transaction, “J2EE-JR1” spent the majority
of the time in steps 2 and 3 (described above) with some minor time spent in
steps 4 and total overhead. The transaction identified as “.NET-NR1” is the .NET
platform version of this same transaction is located near the center of the chart.
The .NET version of this transaction also spends the majority of its time in steps 2
and 3 with no displayable amount of time in any other step.

The supporting data represented by this figure supports the finding that the
.NET platform is faster in many of the discrete transaction phases, but not during
the validation phases.

30
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Platform Analysis - Phase of Transaction by Percentage of Time Per
Transaction Step

0%

20%

40%

60%

80%

100%

XMLA
-JA

1

XMLA
-N

A1

J2
EE-JR

1

J2
EE2-J

S1

J2
EE3-J

S2

J2
EE-JS

3

J2
EE-JS

4

J2
EE-JD

1

J2
EE-JD

2

J2
EE-JD

3

.N
ET-N

R1

.N
ET-N

S1

.N
ET-N

S2

.N
ET-N

S3

.N
ET-N

S4

.N
ET-N

D1

.N
ET-N

D2

.N
ET-N

D3

Platform Test Cases

Pe
rc

en
ta

ge
 o

f T
im

e

Step 1 Step 2 Step 3 Step 4 Total Commo Total Overhead

Figure 5 – Transaction step analyses

Detailed Analysis
A variety of test scenarios and supporting transactions were constructed and
executed in order to observe a number of characteristics of real world
transactions utilizing the GJXDM. These test scenarios and transaction were:

 AMBER Alert
 Field Report
 Arrest Incident Report
 Inmate Record
 RAP Sheet

All of these test scenarios and transactions executed on two platforms identified
as the J2EE platform and the .NET platform. Performance analyses conducted on
all scenarios, transactions, permutations, and combinations of test transaction
characteristics determined that there is a consistent profile of performance. A
representative sample of transactions shows these observations. The entire raw
data set evaluated in order to establish this representative sample is contained in
Appendix A of this report.

31
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

The following selected transactions are representative samples. For this platform
analyses, a unique test identifier represents each transaction type. A description
of the transaction along with its identifier follows in Table 2:

Table 2 – Selected representative sample

Test ID Platform Transaction Schema Data Size
XMLA-JA1 XML Appliance-J2EE AMBER Alert Full Release Average
XMLA-NA1 XML Appliance-.NET AMBER Alert Full Release Average

JS1 J2EE Incident Aggregate Average
NS1 .NET Incident Aggregate Average
JS2 J2EE Incident Full Average
NS2 .NET Incident Full Average
JS3 J2EE Incident Full Average
NS3 .NET Incident Full Average
JS4 J2EE Incident Full Local Average
NS4 .NET Incident Full Local Average
JD1 J2EE Incident Full Minimal
JD2 J2EE Incident Full Average
JD3 J2EE Incident Full Large
ND1 .NET Incident Full Minimal
ND2 .NET Incident Full Average
ND3 .NET Incident Full Large
JP1 J2EE AMBER Alert Pre Release Average
JR2 J2EE AMBER Alert Full Production Average
NR1 .NET AMBER Alert Pre Release Average
NP1 .NET AMBER Alert Full Production Average

Performance testing during discrete phases in the processing of each transaction
provided a wide variety of performance measurements. After a review of all the
data, it was determined that the processing time in elapsed seconds was the most
significant evaluation measurement for comparisons between the platforms.

Schema Approaches
In order to focus the analyses on platform differences and eliminate the
variability of schema usage, the first crucial analysis compared the impact that
different schemas might have on the performance on each platform. Figure 6
depicts the performance of both platforms operating test scenario transactions
using a variety of different XML schema approaches by presenting a side-by-side
comparison of the J2EE and .NET platforms.

The intent of this graphic is to present that the same transactions executing on
the J2EE platform perform notably faster in terms of total seconds than on the
.NET platform. Beginning at the far left of the diagram, the total transaction time
for the transaction identified as “JS1” reported as 671 seconds. The transaction
adjacent to it, identified as “NS1”, is the .NET platform version of this same

32
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

transaction. It reported a total transaction time of 4,151 seconds, over 600%
increase.

This diagram depicts four different schema samples with each platform
compared side by side. In all cases, the J2EE platform performance is notably
faster than the .NET platform performance. This observation leads to a
secondary finding that the schema approach employed does not appear to have
an impact on performance when comparing platforms.

Platform Analysis - Schema Samples

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Test Identifier/Total Seconds

Total
Seconds

671 4151 442 2408 650 2675 449 2367

JS1 NS1 JS2 NS2 JS3 NS3 JS4 NS4

Figure 6 – Platform analysis with various schemas

Payload Size
In order to focus the analysis on platform differences and eliminate the
variability of data size (payload), the second crucial analysis was to evaluate the
impact that different payload sizes might have on the performance within each
platform. Figure 7 depicts the performance of both platforms operating test
scenario transactions using a variety of different payload sizes.

Figure 7 groups the J2EE platform to the left of center and the .NET platform to
the right of center. The intent of this graphic is to depict that the same
transactions executing on the J2EE platform perform notably faster in terms of
total seconds than on the .NET platform. Beginning at the far left, the total
transaction time for the transaction identified as “JD1” reported 675 seconds.
The transaction identified as “ND1” (located just right of center in the diagram)
is the .NET platform version of this same transaction. It reported a total
transaction time of almost 2,700 seconds, a 400% increase.

This diagram depicts three different data size (payload) transactions as
previously defined. In all cases, the J2EE platform performance is notably faster
than the .NET platform performance. This observation leads to a secondary

33
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

finding that the data content size of the transaction does not appear to have an
impact of performance when comparing platforms.

Platform Analysis - Payload Samples

0

500

1000

1500

2000

2500

3000

Test Identifier/Total Seconds

Total
Seconds

674.67 649.74 702.42 2699.7 2674.76 2704.97

JD1 JD2 JD3 ND1 ND2 ND3

Figure 7 – Platform analysis with various data sizes (Payload)

Work Location
The third crucial analysis was to evaluate performance based on work location
(step) when comparing each platform. Figure 5 graphically depicts the
percentage of time that each transaction spends executing at various phases of
the transaction. Table 3 provides the detailed performance data for each of the
transactions as depicted in Figure 5.

Platform Comparisons
Table 3 provides a row-by-row comparison of the performance data for the XML
Appliance, J2EE, and .NET platforms. Displayed is the time in seconds for each
step of the transaction in successive columns moving left to right with the sum of
the steps presented in the far right column. The intent of this table is to
accurately report the elapsed time consumed for each step of the transaction and
compare the same transactions executing on each platform.

The observation and resulting primary finding is that adding the XML Appliance
to a platform speeds up all phases of the transaction with the majority of time
being spent in overhead (for the J2EE variant) or data communication time (for
the .NET variant).

The .NET platform is notably faster in its execution of steps 1 and 4. Generally,
the .J2EE platform is significantly faster in its execution of steps 2 and 3.

34
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Table 3 – Step comparison of the J2EE and .NET platform performance data

Test ID
Total
Time,

Seconds

Total
Processing

Time
Step 1 Step 2 Step 3 Step 4

Total
Comm-

unication

Total
Over
head

XMLA-JA1 14.81 1.65 0.22 0.01 0.00 1.42 0.63 12.53
XMLA-NA1 1.20 0.27 0.02 0.00 0.00 0.25 0.93 0.00
J2EE-JR1 402.08 384.36 0.21 216.27 165.87 2.01 0.58 17.14
J2EE2-JS1 670.92 650.15 3.17 333.01 262.57 51.40 2.92 17.85
J2EE3-JS2 442.01 423.34 3.32 212.60 165.96 41.46 2.08 16.59
J2EE-JS3 649.74 630.80 3.35 314.21 272.57 40.67 2.64 16.30
J2EE-JS4 448.50 431.64 3.29 220.99 164.80 42.56 2.13 14.73
J2EE-JD1 674.67 655.84 0.56 336.32 299.96 19.00 1.55 17.28
J2EE-JD2 649.74 630.80 3.35 314.21 272.57 40.67 2.64 16.30
J2EE-JD3 702.42 682.64 12.77 301.62 265.60 102.65 3.22 16.56
.NET-NR1 2,466.36 2,463.72 0.02 1,402.20 1,061.06 0.44 0.88 1.76
.NET-NS1 4,150.81 4,149.39 0.03 2,370.11 1,776.01 3.24 1.40 0.02
.NET-NS2 2,407.50 2,406.40 0.03 1,374.86 1,028.33 3.18 1.08 0.02
.NET-NS3 2,674.76 2,673.66 0.03 1,496.10 1,171.86 5.67 1.08 0.02
.NET-NS4 2,366.99 2,363.19 0.33 1,337.09 1,020.21 5.56 3.78 0.02
.NET-ND1 2,699.70 2,698.84 0.02 1,495.73 1,199.01 4.08 0.84 0.02
.NET-ND2 2,674.76 2,673.66 0.03 1,496.10 1,171.86 5.67 1.08 0.02
.NET-ND3 2,704.97 2,703.47 0.26 1,490.83 1,204.40 7.98 1.48 0.02
NOTE: Elapsed time in seconds during each phase of transaction

GJXDM Version Comparison
When the performance testing first began, the test team collected data using the
JXD 3.0.0.0 pre-release version. Later, the GJXDM 3.0 initial operating release
became available and the test team ran the battery of tests using the 3.0 version of
the GJXDM. As the team started to update their performance data with the new
data gathered using the 3.0 release, they noted a significant performance
anomaly.

Figure 8 depicts a representative example of the performance of both platforms
operating test scenario transactions using the JXDD pre-release and the GJXDM
initial operating release. Working left to right, this figure first presents a side-by-
side comparison of the J2EE platform first executing the pre-production release
and then the initial operating release of the GJXDM. As the figure depicts, the
transaction identified as “JP1” operating on the J2EE platform consumes 129
Total Seconds using the pre-release GJXDM. That same transaction identified as
“JR1” consumes 402 Total Seconds using the initial operating release of the
GJXDM. This is an increase of approximately 311% for the J2EE platform when
comparing the pre-release version to the initial operating version.

Looking further to the right of Figure 8, there is a side-by-side comparison of the
.NET platform executing the pre-production release and then the initial
operating release of the GJXDM. As the figure depicts, the transaction identified
as “NP1” operating on the .NET platform consumes 102 Total Seconds using the
Pre-release GJXDM. That same transaction identified as “NR1” consumes 2,466

35
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Total Seconds using the initial operating release of the GJXDM. This is an
increase of approximately 2,417% for the .NET platform when comparing the
pre-release version to the initial operating release version.

These observations led to a series of secondary findings:

 The .NET platform appears to have had similar performance as the J2EE
platform when operating under the JXDD 3.0.0.0 pre-release version.

 Changes made to the GJXDM as it migrated from the pre-release version to
the initial operating release version had a negative impact on performance
resulting in increases in the total seconds for all transactions tested under
both the J2EE and the .NET platforms.

 Changes made to the GJXDM schema as it migrated from the pre-release
version to the initial operating release version had a significant negative
performance impact for the .NET platform.

Platform Analysis - PreRelease Schema Versus

Full Production Release Schema

0

500

1000

1500

2000

2500

3000

Test Identifier/Total Seconds

Total
Seconds

129.19 402.08 102.45 2466.36

JP1 JR1 NP1 NR1

Figure 8 – Pre-production versus Initial Operating Release schema comparison

Test committee members observed the major difference between the pre-release
version and initial operating release version of the GJXDM. The major difference
was the conversion of a significant number of attributes, in the pre-release
version, to elements, in the initial operating release. This increased the depth
and breadth of the hierarchical representation of the GJXDM.

To explain the behavior exhibited by the .NET platform, the test team theorized
that the .NET environment has difficulty dealing with larger, more complex
schemas because of the evolution of the .NET environment’s use of the MS-XML
component. Reports indicate the following evolution occurred within the MS-
XML component:

 MS-XML 1.0 - Only supports DTD; no schema support
 MS-XML 2.0 - Supports XDR (reduced Tagname Schemas)

36
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

 MS-XML 4.0 - Support for XSD (XML Schema Definition Standard)

The XDR reduced tagname schema language represents Microsoft’s de-facto
schema language and is mostly not compatible with XSD. The W3C standards
body rejected many of the design elements of XDR in favor of XSD. Because
MSXML 3.0 and prior versions do not comply with the standard, Microsoft made
the decision to ship version 4.0 with two code paths. The two code paths
included a default code path to support the non-standard 3.0 version and a W3C
compliant code path.

Since the performance of the .NET platform was very similar to the J2EE
platform using the JXDD pre-release, the team theorized that the observed
degradation in performance of the .NET environment appears to be associated
with its use of MS-XML Version 4.0 and is not inherent in the .NET environment
itself. Additionally, some of the existing .NET platform tools appear optimized
for the earlier generation DTD approach and therefore not optimized for a
schema approach.

The team believes that once the MS-XML portion of the .NET platform is in full
compliance and optimized to support complex schemas, that the performance of
the .NET platform will be competitive with the J2EE platform.

Although validation of these theories is incomplete, it is important that this
report address the initial thoughts of the test committee on this issue.

Use Case Findings
Use case scenarios provide real-world justice examples for the performance-
testing project. Presented in an organized, systematic framework, they
document exchange requirements and components in commonly understood
language. The team selected a range of scenarios and schema construction
methods to capture performance statistics for exchanges of varying complexity,
from simple messages to complex data payloads. The selected use cases take
advantage of completed development work. Additional benefits of this
approach included the opportunity to compare schemas based on earlier
versions of the model with the initial operating 3.0 release as well as to capture
extensive metrics for the highest priority exchanges.

The primary findings regarding the Use Case Scenarios are:

 Schema design was a critical factor in processing speed; there were significant
differences between different methods.

 While processing resources were allocated differently in each scenario, the
schema approach or exchange platform did not significantly affect the
performance ratios within an individual use case scenario.

37
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Use Case Content
This section summarizes the intent and content of each use case in order to
provide a high-level explanation of key schema components. An analysis of the
test data findings and implications follows in the next section.

AMBER Alert
AMBER1 Alert messages containing information about a specific child (or
disabled adult) abduction are transmitted from an authorized law enforcement
agency to public and private agencies for distribution to the public. It circulates
to state emergency notification systems, departments of transportation (for
publication on highway signs), broadcast media, and other designated agencies,
depending on the specific circumstances of the incident and the specific
information sharing agreements in place. While the exact content of the message
can vary, the National Center for Missing & Exploited Children suggests meeting
the following three criteria before activating an AMBER Alert:

 Law enforcement confirms a child has been abducted
 Law enforcement believes the circumstances surrounding the abduction
indicate that the child is in danger of serious bodily harm or death

 There is enough descriptive information about the child, suspected abductor,
and/or suspect’s vehicle to believe an immediate broadcast alert will help
obtain the safe recovery of the missing person.

The alert information that is distributed after meeting these criteria can include
descriptions and pictures of the missing child, the suspected abductor, a
suspected vehicle, and any other available information that can be used to
identify the child and suspect.

Since AMBER Alert messages are usually low volume, intermittent occurrences,
this scenario focused on testing the impact of different types of schema
construction with a consistent message size. Five different schema formats tested
on each platform:

 Aggregate (Release) incorporates a copy of the full GJXDM 3.0 initial operating
release (3.0) into a single reference document (instead of using import or
include statements), limiting the use of import statements for the proxy
schemas.

 Aggregate Flat (Release) focused on evaluating the impacts of abstraction by
using ‘groups’ and ‘attributeGroups’ to eliminate 3.0 duplicated elements and
create a sectioned data model.

 Full (Release) references the whole 3.0 schema, which is bundled with the test
case in a separate directory.

1 America’s Missing: Broadcast Emergency Response (http://www.AMBERalert.gov/)

38
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

 Full (Pre-Release) is the same as Full (Release) except that it references the
3.0.0.0 pre-release schema instead of the 3.0 initial operating release.

 Subschema (Release) references a reduced version of the 3.0 schema that was
created manually.

 Subschema (Optimized) references a schema produced using the GTRI
subschema generator.

The message content was defined with a schema that was assembled from
Incident, Subject, and Vehicle elements as defined in the GJXDM schemas along
with two locally defined elements (AMBERAlert and MessageSentDateTime).
The schemas obtained all referenced schemas locally and did not use type
substitution or constraints.

Arrest/Incident Report
The Arrest/Incident use case describes a criminal event requiring law
enforcement intervention that ultimately culminates in the arrest of one or more
subjects. Test exchanges focus on a single scenario, where a law enforcement
agency transmits the arrest incident information to the prosecutor’s office after
completing the booking process of a subject.

An instance of this exchange is comprised of single Incident containing a
narrative summary of the event, followed by repeating Person, Charge, and
Property sections. An important distinguishing feature of these scenarios is the
use of the dedicated GJXDM reference elements to establish relationships
between persons, property, and documents. Four different schema formats were
tested on each platform:

 Aggregate (Release) directly incorporated all of the GJXDM types from the 3.0
release into a single reference document.

 Subschema (Release) referenced a local subset of the GJXDM.
 Full External (Release) referenced the full 3.0 release from the OJP Web site.
 Full Local (Release) was the same as the Full External version, except that the
3.0 release import namespace was stored locally.

All schemas were assembled from Document, Incident, Booking, Case, and
Arrest Charge elements as defined in the GJXDM along with a number of locally
defined elements, including forty-nine sets of code enumerations. The schemas
did not use type substitution or constraints.

Inmate Record
The inmate record is a person’s history containing the subject’s name, address,
and identifying information together with detention information for specific
offenses and sentences. A complete inmate record contains the subject’s current

39
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

name and address, all name aliases, addresses associated with each name alias,
and detention information that includes supervision information along with the
associated court case and sentenced offense. This exchange represents
communication between law enforcement and detention agencies with a records
repository and includes a number of add, update, and query (display)
transactions utilizing different combinations of the exchange components. These
transactions were:

 Alias Name Add - The law enforcement agency records a new subject alias
name to the list of existing name alias records.

 Alias Address Add - The law enforcement agency adds a new subject alias
address to the list of existing address alias records.

 Current Address Update - The law enforcement agency updates the subject’s
current address, which results in the movement of the original address to a
list of the subject’s alias address records.

 Detention Add - The detention facility adds a new detention record to the
inmate detention history. This represents the Person portion of the Inmate
subschema along with a single Detention element and is a repeating element
in Inmate.

 Detention Update - The detention facility provides a revised detention record,
which updates the current inmate detention record.

 Person Update – An authorized agency provides an updated person record
that will update the current person record. It does not contain any repeating
elements and the actual size of the record should vary only by the size of the
data transmitted.

 Basic Query - In response to a request (not included in the testing scenarios)
from an authorized agency, the records repository will provide a person
record without the alias, alias address, or detention records attached.

 Full Query - In response to a request from an authorized agency, the records
repository provide a full inmate record that includes one or more of the
repeating alias, alias address, and detention records.

Although schema frameworks were tested on both platforms, they were more
limited initially than in other use cases due to the large number of exchange
transactions. Additional schemas added using the GJXDM 3.0 initial operating
release provided more comparison that is consistent across use cases. The five
different schemas were:

 Aggregate (Pre-Release) - includes copies of all elements and dependency trees
for referenced JXDD elements, based on the 3.0.0.0 pre release, into a single
reference document instead of using import or include statements.

 Aggregate (Release) - consolidates the 3.0 GJXDM and Inmate Record reference
document into a single schema.

40
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

 Full (Pre-Release) - imports the 3.0.0.0 pre-release from a local import
namespace.

 Full (Release) - imports the full GJXDM 3.0 from a local import namespace.
This reference document follows the GTRI recommended practice that uses a
single root element (InmateType) based on the GJXDM document type

 Subschema (Release) - references local subset schema based on the GJXDM 3.0.
For the Full Query transaction only, this Subschema provides comparisons to
facilitate between exchanges.

The Incident schema is comprised of two locally defined complex elements:
InmateType that includes the GJXDM Subject along with local elements, and
DetentionType that contains the GJXDM Supervision, Case, Incident, Sentence,
and SameAsRelationship elements, in addition to several other local extensions.
In contrast to the Arrest/Incident Report, relationships are defined using
standard XML ID and REF elements. It did not use type substitution or
constraints.

RAP Sheet
The RAP (Record of Arrest and Prosecution) Sheet is a record of an individual’s
criminal history.

A typical RAP Sheet transaction involves the transmission of a Person Check
request containing basic identifying information about subject from a law
enforcement agency to a records repository. The repository will return a
response indicating either no match or a report containing match information,
usually multiple records for different individuals. The response also contains the
original query content to enable the requesting system to match up the new data
with the request. This test case involves requesting the RAP Sheet information
from the back-end server and displaying it on the user’s screen; a complete
description of the testing transactions is located in the Test Results Primer
contained in Appendix B of this report.

This test case primarily explores the effects of larger repeating data sets. The
four different schemas were:

 Aggregate (Release) - incorporates a copy of the full GJXDM 3.0 initial
operating release (3.0) into a single reference document (instead of using
import or include statements) and only uses import statements for the proxy
schemas.

 Full (Pre-Release) - is the same as Full (Release) except that it references the
3.0.0.0 pre-release schema instead of the 3.0 initial operating release.

 Full (Release) - references the whole 3.0 schema, which is bundled with the test
case in a separate directory.

 Subschema (Release) - references a reduced version of the 3.0 schema.

41
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Construction of the local container elements, (e.g. RapSheetRequest and Cycle),
employs the GJXDM person identifiers, Arrest, Charge, Sentence,
DisciplinaryAction, Supervision objects, and other local extensions. They use the
GXJDM reference elements to document the relationships between components.

Summary Data
This analysis compared the transaction time in seconds for average data
payloads on a 100M network to focus the analysis on a high-level review of any
differences within and between use cases. (Network speed and data size were
not included in this analysis, as it is already addressed elsewhere in this report).
The time measurements were divided into three categories: total communication
time (total time less overhead and processing); total overhead (startup and
“garbage collection” time on the servers), and total processing (request
generation, validation, parsing, manipulation, and serialization/storage) time.

There were a number of key findings from this analysis:

Schema design was a critical factor in processing speed; there were significant
differences between different methods.

 The Aggregate Flat schema documented in the AMBER Alert was
significantly slower than any other schema, processing, on average, 340%
slower in .NET and 269% slower in J2EE. Figures 9 and 10 depict the J2EE
and .NET platform tests using the average data size and a 100M network.

AMBER Alert J2EE Subschema Comparision

0
20
40
60
80

100
120
140
160

Full (pre-
release)

Subschema
(optimized)

Full
(release)

Aggregate
(release)

Subschema
(release)

Aggregate
Flat

(release)

Schema

Ti
m

e/
se

co
nd

s

Figure 9 – AMBER Alert J2EE subschema comparison

42
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

AMBER Alert .NET Subschema Comparision

0
200
400
600
800

1000
1200
1400

Full (pre-
release)

Subschema
(optimized)

Full
(release)

SubSchema
(release)

Aggregate
(release)

Aggregate
Flat

(release)

Schema

Ti
m

e/
se

co
nd

s

Figure 10 – AMBER Alert .NET subschema comparison

 A head-to-head comparison, depicted in Figure 11, of aggregated and

imported schemas shows that performance is faster when schemas divided
into smaller components.

Incident Report Subschema Comparision

0
50

100
150
200
250
300
350
400
450

Full Local
(release)

Aggregate
(release)

Full Local
(release)

Aggregate
(release)

J2EE J2EE .NET .NET

Schema

Ti
m

e/
se

co
nd

s

Figure 11 – Comparison between Full and Aggregate schemas

 In Figure 12, subschemas did not improve performance as much as expected,
and were noticeably slower than equivalent schemas based on the full release
in the AMBER Alert, Inmate Record, and RAP Sheet use cases. Overall
performance was about the same in the Arrest Incident Report, although J2EE

43
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

did show improvements in the communication, request generation, and
request transformation categories.

AMBER Alert J2EE Subschema Performance as a
Percentage of Full Schema

0%

50%

100%

150%

200%

Full (release) Subschema (release) Subschema (optimized)

Schema

Pe
rc

en
ta

ge
 o

f F
ul

l S
ch

em
a

Figure 12 – Subschema performance as percentage of Full Schema

An important implication of this finding is that subschemas must be carefully
designed and are not always the “silver bullet” solution to performance
concerns. Additional research is required to investigate this issue further.

Processing resources allocated differently in each scenario, but performance
ratios within an individual use case scenario, were essentially the same
regardless of the exchange platform or schema approach.

 In Figure 13, the ratio of time spent in communication, overhead, and
processing was consistent within a single scenario regardless of data size or
schema type, including the pre-release and initial operating release2 versions
of the scenarios. However, the ratio of time spent in each processing step
varied between use cases.

Table 4 describes the transaction type identifiers used in Figures 13 and 14.
Table 4 – Transaction type identification by platform, schema, and data size

Transaction ID Platform Schema Data Size
JPM J2EE Aggregate (pre-release) Minimal
JPA J2EE Aggregate (pre-release) Average
JPL J2EE Aggregate (pre-release) Large
JFM J2EE Full (pre-release) Minimal
JFA J2EE Full (pre-release) Average

2 The subschema (release) schema numbers were slightly different, but not considered in this analysis as the
testing team felt the numbers were misleading.

44
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Transaction ID Platform Schema Data Size
JFL J2EE Full (pre-release) Large
NPM .NET Aggregate (pre-release) Minimal
NPA .NET Aggregate (pre-release) Average
NPL .NET Aggregate (pre-release) Large
NFM .NET Full (pre-release) Minimal
FNA .NET Full (pre-release) Average
NFL .NET Full (pre-release) Large

Percentage of Time Processing

0%

20%

40%

60%

80%

100%

JPM JPA JPL JFM JFA JFL NPM NPA NPL NFM FNA NFL
Transaction Type

Pe
rc

en
ta

ge
 o

f T
im

e

Total communication Total overhead Total processing

Figure 13 – Time ratios for major processing steps

 INMATE Add and Update Scenarios (Figure 14)

 In .NET, processing time was split between request validation on the front-end
and the back-end servers during the add/update scenarios

 In contrast, J2EE, the processing time divided roughly evenly between four
stages of the transaction. The request validation on the front-end server, request
validation on the back-end server, DOM parsing of the request on the back-end
server and DOM parsing of storage on the back-end server all consumed an
equal amount of transaction percentage time. Transaction startup consumed the
remaining notable time of the J2EE transaction for both the front-end and back-
end servers.

45
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Percentage of Time Spent in Processing Steps

0%

20%

40%

60%

80%

100%

JPM JPA JPL JFM JFA JFL NPM NPA NPL NFM FNA NFL

Transaction ID

Pe
rc

en
ta

ge
 o

f T
im

e

Startup/GC (FS) Request generation (FS) Request validation (FS)

Startup (BS) Request validation (BS) DOM Parsing request (BS)

DOM Parsing of storage (BS) DOM Manipulation (BS) Serialization and Storing (BS)

Figure 14 – Processing ratio differences between .NET and J2EE

 INMATE Query Scenarios

 In Figure 15, query scenarios used different processing measurements. In both
.NET and J2EE, processing time was split between the four validation steps,
request validation on the front-end and back-end servers, and the return
validation steps on the back-end and front-end servers.

Query Transaction Percentage Breakdown

0%

20%

40%

60%

80%

100%

JQP JQR JQPF JQF

Transaction ID

Pe
rc

en
ta

ge
 o

f T
im

e

Request Validation (FS) Request Validation (BS) Validation (BS) Validation (FS)

Figure 15 – Processing ratios for .NET and J2EE

46
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Table 5 describes the transaction type identifiers used in Figures 15. All of these
transactions used an Average data size.

Table 5 – Transaction type identification by platform and schema

Transaction Id Platform Schema
JQP J2EE Aggregate (pre-release)
JQR J2EE Aggregate (release)

JQPF J2EE Full (pre-release)
JQF J2EE Full (release)
NQP .NET Aggregate (pre-release)
NQR .NET Aggregate (release)

NQPF .NET Full (pre-release)
NQF .NET Full (release)

Data Size (Payload) Findings
Most of the test included multiple data sets of varying sizes to determine the
relationship of data size to performance. For Inmate Report, only the Report itself
included multiple data sets.

Typically, the data sets characterized as Minimal, Average, or Large. All test
cases, except AMBER Alert, had a request data set that in some cases provided
an additional data set for comparison.

Summary Data
Each of the test cases were executed with each data set and resulted in a
complete set of timings for each platform. Figure 16 compares the J2EE Incident
Report using both an Aggregate Schema and Subschema for Minimal, Average,
and Large data payload sizes. The darker color represents the Aggregate Schema
performance times and the Subschema times are the lighter color. The Aggregate
performance is consistently slower for all three data payload sizes and Data Size
does not appear to have a significant impact on performance.

47
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Data Size (Payload) and Schema Comparison

0
10
20
30
40
50
60
70
80

Minimal Average Large

Data Size

Ti
m

e/
se

co
nd

s

Aggregate (release) Subschema (release)

Figure 16 – Data size (Payload) and schema comparison

Analysis
From the limited set of data points, it appears that the relationship between data
size and performance appears to be more logarithmic than linear. However, it is
likely that this relationship might be different for very large data sets, such as the
extensive “Large” data sets used in the RAP Sheet and Inmate Record
transactions.

Schema Design Findings
The investigation of the schema design determined the effects of several key
design considerations for the GJXDM data model. The results of this
investigation confirmed that many of the GTRI suggestions are best practices.

It is important to note, that most of the findings regarding schema design were
applicable to both platforms and all use cases.

Summary Data

Flattening the Data Model
A selected test case measured how the object model complexity affects
performance. In addition, a specially developed subset schema collapsed the
object hierarchy into a single complex type and expanded elements of complex
types. The result was that every required element contained a single complex
type containing elements of simple types.

The test results showed that flattening the data model significantly degraded
performance. Analysis suggests that flattening the data model precluded any
XML parser optimizations, and did not add any processing benefits.

48
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

In general, the tests support the GTRI suggestions for GJXDM usage and support
the suggestions for structuring the schema and XML instance documents. Figure
17 is a comparison of AMBER Alert Aggregate schema versus Flat schema. On
the left side of the figure are the J2EE comparisons and on the right present the
.NET findings. The .NET times are more than twice the J2EE performance times.

Comparision of AMBER Alert Aggregate Schema
versus Flat Schema

0
200
400
600
800

1000
1200
1400

Aggregate
(release)

Aggregate Flat
(release)

Aggregate
(release)

Aggregate Flat
(release)

J2EE J2EE .NET .NET

Schema

Ti
m

e/
se

co
nd

s

Figure 17 – Comparison of Aggregate schema versus Flat schema

Subset Schema Architecture
Research into the test results indicate that the XML parser optimizations work
best when elements, object, and files can be loaded on demand rather than
together at the front-end.

Analysis
The test results confirm that the GTRI suggested deployment architecture for
reference and instance schemas appears to offer the best overall performance.
This conclusion appears to hold true for both platforms tested and all scenarios.

In addition, the test results also confirm that the object-oriented data model
offers the most opportunity for parser optimization.

The W3C standard leaves optimization mostly up to the parser implementation.
That means other parsers, not included in the evaluation for this report, may
provide better optimization profiles, which would require additional evaluation.

49
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Reduced Tag Names
All tag names in the GJXDM reference schema conform to the ISO 11179 Naming
Convention Standards and are subsequently quite lengthy. One scenario of the
AMBER Alert test case measured the effect of lengthy tag names.

By reducing the tag names to three character names and making substitutions in
the GJXDM reference schema, the instance schema, and the instance document,
the transaction time improved by 50% on average.

It appears that overall string length of tags and the size of the document as a
whole does have an effect on performance given that subset schemas as well as
reducing tag name size improved performance.

Tag Name Length Findings
This special test reused the simplest scenario, AMBER Alert, in order to examine
the concern that the long tag names specified by the GJXDM naming conventions
adversely affect the time required to create, transmit, consume, and transform
XML instances. The 1-, 2-, or 3-letter alpha character codes were used to replace
the original element, attribute names, and references defined in the GJXDM
reference schema and instance documents. However, reduced tag names were
not assigned to other components of the reference schema, such as
attributeGroup name, nor were they used in any imported proxy schemas, such
as those used to access the NIBRS code types.

The primary findings regarding the Tag Name Length test are:

 Reduced tag names significantly reduced total communication time.
 Reduced tag names did not always affect the total processing time, especially
when the total communication time was a smaller percentage of the total
transaction time.

Summary Data
Figure 18 depicts the J2EE and .NET standard and reduced tag traffic numbers
for both the Aggregate (release) and Full (release). The left side of the figure
represents the J2EE data and the right side represents the .NET data. The
performance time for J2EE is significantly less in all tests in the Standard and
Reduced releases.

50
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Tag Name Length Evaluation

0
50

100
150
200
250
300
350
400
450

J2EE Aggregate J2EE Full .NET Aggregate .NET Full

Schema

Ti
m

e/
se

co
nd

s

Standard Tag Name Reduced Tag Name

Figure 18 – Performance comparison between standard and reduced tag names

 Figure 19 depicts the percentages of Communication Time versus Total Time
in several combinations. The communication times compare a set of J2EE
Aggregate Standard and Reduced and J2EE Full Standard and Reduced
combinations. The same combinations for .NET are on the right side of the
figure.

Percentage of Communication Time versus Total Time
10.53% 17.13% 43.73%3.57%40.77%33.31%13.32%14.42%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

J2EE
Aggregate,
STANDARD

J2EE
Aggregate,
REDUCED

J2EE Full,
STANDARD

J2EE Full,
REDUCED

.NET
Aggregate,
STANDARD

.NET
Aggregate,
REDUCED

.NET Full,
STANDARD

.NET Full,
REDUCED

Schema/Tagname Length

Pe
rc

en
t %

Total Time Remaining Total Communication

Figure 19 – Percentages of communication time for reduced tag names

 The team found no observable gains in total processing time for Full Schema
Reduced Tags in either J2EE or .NET. J2EE processing time was actually
slightly higher that the Full Schema Standard Tags (101%), with most of the

51
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

extra work occurring in the Request Generation phase on the back-end server.
The team observed no changes in .NET processing time, except that front-end
server Response Transformation was faster while Total Communication time
was slower.

 In contrast, total processing time for Aggregate Schema Reduced tags took
56% less time in J2EE and 46% less time in .NET. While it is not clear why
this occurred, one factor may be that the exclusion of the attributeGroup
components (used to define SuperType metadata) from the reduced tag name
implementation diluted the impact of this approach. Another explanation
may be the smaller size of the Aggregate schema.

Network Considerations Findings
Most of the test cases included scenarios for testing the effects of network
bandwidth. Extensive testing of the transmission times for instance documents
and at least one of the test cases evaluated the effect of referencing a remote
schema location.

Summary Data
Calculating the latency time for the transmission steps in milliseconds provided
the measurements of network bandwidth in the test harness. Figure 20 shows
how network bandwidth affects the latency time for the transmission step.

J2EE and .NET Bandwidth Comparison

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

100MBps 10MBps 56Kbps 9.6 Kbps

Bandwidths

Ti
m

e/
m

ill
is

ec
on

ds

.NET Platform J2EE Platform

Figure 20 – Network bandwidth performance comparison

52
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Additionally, the Incident Report test case included a scenario for testing the
affect of referencing a remote schema. For typical network settings, it added
about thirty seconds to the overall transaction time and degraded quickly into
hours of latency time in network bandwidth-constrained environments.

Analysis
The test results indicate when the network bandwidth drops to 9,600 bps, that
transaction times are significantly impacted.

This has implications mostly for wireless applications of the GJXDM. Many
older public safety radio channels and even a few commercial radio networks
may not offer much more than 9,600 bps.

The GJXDM should not be used in low bandwidth applications. The intended
use of the GJXDM is to expose an application’s external touch points and is not
intended to manage internal communication within a “closed system”
environment such as mobile computing.

Some wireless justice applications may benefit from GJXDM. Factoring the
network bandwidth needs into the early designs would reduce the total effort to
repair it later.

The test results also indicate that the cost of referencing a remote schema location
is significant.

Given XSTF’s commitment to maintaining compatibility of the model, there does
not appear to be much benefit to referencing a remote version of the GJXDM.

Where Work Happens Findings
Much of this project has focused on the level of effort required to perform
common tasks with the GJXDM data model. The result of the work the team
performed is a better understanding of not only the level of effort, but also what
tasks require more effort.

Summary Data
In all test cases, the largest component of the latency time for the transaction was
validation. All of the transactions performed at least one validation step and at
least one performed four validations steps.

The other large component of the latency time for the transaction was DOM
processing. To test DOM processing the team chose Inmate Record because it
contained several transaction schemas with data sets. This appears to be the case
for both platforms and with all test scenarios where the GJXDM is involved.

The Figures 21 and 22, that follow, illustrate this point:

53
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

J2EE Referencing Full GJXDM

DOM-parsing of
storage (BS)

28%

Request validation
(BS)

27.04%

Request validation
(FS)

21.55%

DOM manipulation
(BS)

22.56%

Serialization and
storing (BS)

0.35%
Creating request (FS)

0.02%

DOM-parsing
request (BS)

0.35%

Creating request (FS)

Request validation (FS)

Request validation (BS)

DOM-parsing request (BS)

DOM-parsing of storage (BS)

DOM manipulation (BS)

Serialization and storing (BS)

`

Figure 21 – J2EE where work happens breakdown

.Net Reference Full GJXDM

DOM-parsing request
(BS)

0.00%

Request validation
(FS)
21%

DOM manipulation
(BS)
22%

Request validation
(BS)
28%

Creating request (FS)
0.01%

Serialization and
storing (BS)

0.01%

DOM-parsing of
storage (BS)

28.55%

Creating request (FS)

Request validation (FS)

Request validation (BS)

DOM-parsing request (BS)

DOM-parsing of storage (BS)

DOM manipulation (BS)

Serialization and storing (BS)

Figure 22 – .NET where work happens breakdown

54
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Analysis
Validation latency is mostly the result of the overall depth and breadth of the
data model.

By comparing the validation latency between JXDD 3.0.0.0 pre-release and
GJXDM 3.0 initial operating release, the impact of the model complexity becomes
clearly visible. JXDD 3.0.0.0 validation time is a small fraction of the validation
time for required by the GJXDM 3.0 initial operating release.

Additional research of data model differences and the search for the primary
cause for dramatic validation time increases confirmed that complexity increases
the validation time.

After evaluation of all of the added elements including proxy schemas, none
added significance by itself.

Several of the tests confirm that both XML parsers tested offer some sort of
optimization.

Optimization appears based on the parser’s ability to load elements, objects and
files on demand. The poor performance of the aggregated and flattened schemas
proved the basis of this theory. In both cases, it appears that the parser must
load the full schema rather than just parts of it.

Based on the test results, it appears that the best schema deployment is what
GTRI has recommended as part of the GJXDM data model documentation.

Additionally, validation time can be significant. It is important to define
thoroughly the role of conformance validation needs early in the design of a
software product.

In practice, it is likely that validation is a “Validation Testing” tool and in normal
production, mode validation is disabled.

For the one test case where DOM was tested, the time it took to load the
document into DOM was just as significant as schema validation.

Using DOM to perform production work requires careful evaluation, as there are
better methods for performing common data processing tasks.

55
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Lessons Learned (Tricks, tips and hints)
Summary

MSXML 3.0, used by Visual Studio .NET by default, cannot validate with schemas and
needs to be upgraded to 4.0 version.
To validate with schema under .NET, it is necessary to put it into the schema cache
and make an explicit call to the API.
When the WS Developer's Pack 1.3 is installed, it provides its own endorsed JARs for
XML processing; this breaks some other Java programs that do XML processing (e.g.,
command line utils); the solution is to copy the endorsed JARs into jre/lib/endorsed
directory in the SDK.
It is possible to enable explicit caches for data and pages in .NET, which would be
beneficial for GJXDM processing because the schema information stays the same, and
cached in memory as opposed to reading from filesystem repeatedly.
Looking into standard SOAP compression (see http://www-
106.ibm.com/developerworks/webservices/library/ws-sqzsoap.html) may help
communication times.
When the schemaLocation needs to be set, J2EE on Linux and Windows will look for
the entities in different places – J2EE on Windows looks in the home directory of the
user running Tomcat, while J2EE on Linux looks in the JWSDP home directory.
Therefore, the systemID of the schema will not be the same and the custom entity
resolver will wind up being unportable.
On .NET, it is evident that it is parsing GJXDM that is taking all the validation time. The
call to AddSchema(), which associates a namespace with a URL where the schema file
can be reached, takes almost 100% of the time we count as 'validation'. E.g., in
AMBER Alert, a common validation run will consist of 177 seconds for schema parse
and 56 milliseconds for the validating parse. On Java, explicitly adding a schema to
cache using the API does not result in schema parsing, which is apparently done later,
during a call to parse(). Lesson: on .NET, only load schema if it is definitely used,
because .NET is significantly slower when loading the schema.
The prefixed elements could not be retrieved because we were not using the correct
namespace URI in the .NET’s AddNamespace() call. Apparently, the prefix we use
does not matter (as long as we are consistent), but it is the URI that has to match the
targetNamespace in the XSD file. Therefore, we can add a new prefix to the
namespace manager, and use it in the XPath. Although in this particular case we did
not face this problem, there appears to be a known 'feature' in .NET XML
implementation, which does not handle default name spaces well. If the XPath with
mixed prefixed and non-prefixed element addressing does not work, the workaround is
to define (through the namespace manager) a dummy namespace matching the URI of
the XML file's default namespace and using the prefix when addressing with XPath
elements that do not have prefixes. Meaning, add a 'blah' namespace matching
'http://tempuri.org/JXDDv3_InmateAlias.xsd' and pull out ClientID using
'/inm:Inmate/blah:ClientID'. For more information, see
http://weblogs.asp.net/wallen/archive/2003/04/02/4725.aspx, which sums it up well, and
has links to other resources.
Subschema loads show an improvement on J2EE, but not on .NET, which supports the
idea that J2EE only brings in the needed parts of the schema. On Java, a marked
difference exists in processing time between a file that just imports the GJXDM vs. a file
that uses the Person/Vehicle. On .NET, there is no such difference.

56
http://www.ijis.org/

http://www-106.ibm.com/developerworks/webservices/library/ws-sqzsoap.html
http://www-106.ibm.com/developerworks/webservices/library/ws-sqzsoap.html
http://weblogs.asp.net/wallen/archive/2003/04/02/4725.aspx

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Default data encodings used by J2EE and .NET are different. .NET uses "document-
style" (i.e., simple html-entities replacement) encoding, while Java uses lengthier RPC
encoding, which shows longer transmission times. The settings of JWSDP 1.3 (which
were used during our tests) are “document-style”, which is the same as in .NET, so this
is not an issue. NOTE: In Java, Web Service compilation/build setting in the Ant scripts
(calling wscompile with ‘-f:docliteral’) does not seem to change the on-the-wire
representation (needs more investigation later).

57
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

Proposed Next Steps

Recommendations for Further Research
 Explore the effects of data sets of “N” complexity on performance. The intent is to
build a framework set of guidelines for building constraint schemas.

 Given that GJXDM is “Non-Deterministic”, it is possible to build conforming
XML instance documents of arbitrary complexity. “Non-Deterministic”
describes the JXDM because the data model contains recursive references to
elements and does not establish bounds or constraints on these elements.
Moreover, the instance document determines the level of recursion.

 The suggestion is to perform boundary testing with existing XML Parsers to
establish reasonable guidelines for complexity level. Limiting the construction of
constraint schemas provides those boundaries and serves two purposes. It
restrains the complexity limits and establishes the performance expectations
based on complexity.

 Organize a GJXDM Users Group (National or Regional)
 One of the biggest risks identified by the team for the adoption of GJXDM was a

lack of information about how to apply and implement the data model. Classes
and seminars are only the first step.

 A User’s Group establishes a support network of peers to provide real world
help and examples to solve problems. It would also be a vehicle to disseminate
important information quickly about GJXDM to the user community.

 Test the effects of splitting the data model into subdocuments
 Preliminary research indicates that current implementations of XML parsers are

able to better optimize tree construction if the schema is separated into a number
of smaller imported files.

 If the whole model is stored in a single file, the whole file must be loaded. If the
model is broken up into several files, only those files containing referenced
elements are loaded into the tree.

 Additional research should focus on better understanding if behavior is this
implementation detail of the XML parsers or a reliable best practice.

58
http://www.ijis.org/

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/

APPENDIX A – Raw Data

 Inmate Record Page 1-4

 AMBER Alert (+ small tags) Page 5

 Incident Report Page 6-7

 Field Report Page 8

 RAP Sheet Page 9-10

 Baseline Page 11

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 1

Inmate Record data

TEST CASE SPECIFICS GENERAL TRANSACTION STATISTICS START-UP/GC

(FS)
REQUEST

GENERATION
(FS)

REQUEST
VALIDATION (FS)

START-UP/GC
(BS)

REQUEST
VALIDATION (BS)

DOM-PARSING
REQUEST (BS)

DOM-PARSING OF
STORAGE (BS)

DOM
MANIPULATION

(BS)

SERIALIZATION
AND STORING

(BS)
Platform Schema Data

Size Network Total Time,
ms

Total
Comm, ms

Total
Overhead, ms

Total
Processing, ms

TCP
Conversation

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

ADD ALIAS

J2EE Aggregate
(pre-release) Minimal 100M 20476 39 1565 18872 3864 681 12317 3 12644 3994 22411 884 10834 4963 20668 4841 29080 5038 39647 26 40693 7 40824

J2EE Aggregate
(pre-release) Minimal 10M 20527 47 1563 18917 3864 678 12272 3 12600 4010 22367 885 6780 4949 16614 4847 25022 5068 35593 25 36639 15 36770

J2EE Aggregate
(pre-release) Minimal 56K 20739 255 1563 18921 3864 677 6793 3 7120 4014 16888 886 12531 4961 22365 4853 30773 5057 41344 26 42390 7 42520

J2EE Aggregate
(pre-release) Minimal 9.6K 21712 1317 1504 18891 3864 618 10788 3 11115 4000 20883 886 6780 4952 16614 4844 25022 5060 35593 26 36639 6 36769

J2EE Aggregate
(pre-release) Average 100M 20573 45 1579 18949 3864 686 12277 3 12605 4010 22373 893 6780 4950 16614 4855 25022 5087 35658 33 36731 11 36964

J2EE Aggregate
(pre-release) Average 10M 20548 56 1584 18908 3864 679 12288 3 12615 4003 22383 905 10833 4946 20667 4841 29076 5067 39712 37 40785 11 41018

J2EE Aggregate
(pre-release) Average 56K 20736 242 1563 18931 3864 678 6794 3 7121 4011 16889 885 12535 4955 22382 4830 30780 5088 41455 33 42528 11 42760

J2EE Aggregate
(pre-release) Average 9.6K 21836 1336 1564 18936 3864 679 10785 3 11113 3998 20881 885 12538 4971 22372 4842 30780 5078 41417 32 42490 12 42722

J2EE Aggregate
(pre-release) Large 100M 20639 41 1559 19039 3864 677 6793 3 7120 3999 16908 882 12536 4961 22369 4837 30781 5141 41508 78 42625 20 43067

J2EE Aggregate
(pre-release) Large 10M 20659 39 1559 19061 3864 677 12282 3 12609 4036 22397 882 10830 4982 20663 4818 29075 5114 39802 89 40919 19 41361

J2EE Aggregate
(pre-release) Large 56K 20842 273 1566 19003 3864 677 10782 3 11109 4020 20897 889 12534 4960 22367 4840 30779 5115 41506 46 42623 19 43065

J2EE Aggregate
(pre-release) Large 9.6K 21872 1310 1568 18994 3864 680 10782 3 11109 4000 20897 888 12556 4958 22390 4839 30802 5129 41529 46 42646 19 43088

J2EE Full (pre-release) Minimal 100M 22866 48 1677 21141 3870 656 12946 3 13274 4621 24688 1021 14366 5712 25825 5206 39667 5564 48530 28 49562 7 49694

J2EE Full (pre-release) Minimal 10M 22850 51 1696 21103 3870 656 12936 3 13264 4633 24679 1040 8910 5737 20375 5182 34221 5514 43059 27 44091 7 44223

J2EE Full (pre-release) Minimal 56K 23175 267 1678 21230 3870 656 12925 3 13253 4688 24668 1022 14335 5762 25794 5197 39631 5545 48476 28 49508 7 49640

J2EE Full (pre-release) Minimal 9.6K 24097 1317 1683 21097 3870 656 12926 3 13254 4639 24668 1027 14356 5729 25803 5191 39637 5500 48487 28 49519 7 49651

J2EE Full (pre-release) Average 100M 23050 45 1710 21295 3870 671 12956 3 13284 4640 24705 1039 14370 5749 25834 5179 39664 5672 48567 39 49644 13 49878

J2EE Full (pre-release) Average 10M 22946 44 1718 21184 3870 678 7150 3 7478 4679 18893 1040 14787 5740 26251 5184 40080 5526 48983 39 50060 13 50294

J2EE Full (pre-release) Average 56K 23124 260 1711 21153 3870 671 12935 3 13263 4641 24678 1040 8910 5741 20368 5183 34206 5532 43098 39 44175 14 44409

J2EE Full (pre-release) Average 9.6K 24185 1317 1714 21154 3870 672 12936 4 13264 4642 24678 1042 14342 5725 25801 5187 39644 5544 48536 39 49613 13 49847

J2EE Full (pre-release) Large 100M 25412 173 1459 23780 3870 591 11714 3 12042 5047 25353 868 12583 6462 25940 5962 35755 6162 46294 92 47381 52 47827

J2EE Full (pre-release) Large 10M 24176 48 1563 22565 3870 667 10822 3 11150 4926 24424 896 6780 6072 20137 5660 29969 5805 40488 74 41576 25 42021

J2EE Full (pre-release) Large 56K 24553 274 1554 22725 3870 674 12441 3 12769 5123 26061 880 12725 6070 26052 5636 35896 5815 46435 59 47523 19 47968

J2EE Full (pre-release) Large 9.6K 25348 1317 1567 22464 3870 677 10826 3 11154 4896 24446 890 6780 6060 20137 5641 29951 5790 40490 55 41578 19 42023

UPDATE ADDRESS

J2EE Aggregate
(pre-release) Minimal 100M 19989 107 1731 18151 5578 690 12912 21 13675 3904 21804 1041 14813 4865 28820 4555 35892 4778 45098 19 45806 9 45941

J2EE Aggregate
(pre-release) Minimal 9.6K 20694 1345 1742 17607 5578 677 13073 7 13836 3767 21981 1065 14801 4524 28809 4541 35879 4731 45067 27 45774 10 45910

J2EE Aggregate
(pre-release) Average 100M 20490 139 1801 18550 5578 679 12929 7 13691 3781 21820 1122 14845 4617 28837 4553 35922 5555 45156 15 45863 22 46124

J2EE Aggregate
(pre-release) Average 9.6K 21956 2605 1685 17666 5578 660 7157 6 7919 3749 16064 1025 8916 4494 22922 4517 29994 4863 39248 15 39955 22 40216

J2EE Aggregate
(pre-release) Large 100M 21626 114 1627 19885 5578 730 6169 7 6931 4138 16584 897 12592 5495 22425 4876 30854 5264 41617 26 42319 79 42770

J2EE Aggregate
(pre-release) Large 9.6K 23192 2586 1620 18986 5578 709 12744 6 13506 4009 23159 911 12653 4961 22468 4850 30897 5121 41660 15 42362 24 42813

J2EE Full (pre-release) Minimal 100M 23502 54 1691 21757 5585 662 7157 55 7920 4888 19205 1029 8915 5939 20374 5226 34194 5625 43039 15 43746 9 43883

J2EE Full (pre-release) Minimal 9.6K 25343 2586 1685 21072 5585 661 12293 6 13056 4671 24341 1024 14345 5729 25802 5221 39624 5420 48473 15 49180 10 49316

J2EE Full (pre-release) Average 100M 23005 55 1721 21229 5585 677 13041 7 13804 4637 25089 1044 14793 5747 26252 5186 40077 5616 48972 15 49679 21 49942

J2EE Full (pre-release) Average 9.6K 25501 2603 1741 21157 5585 697 12308 6 13072 4657 24401 1044 14348 5750 25807 5202 39644 5505 48519 15 49226 22 49489

J2EE Full (pre-release) Large 100M 24573 93 1557 22923 5585 594 10093 7 10857 5079 24063 963 6784 6240 20073 5707 29924 5828 40462 16 41164 46 41617

J2EE Full (pre-release) Large 9.6K 26628 2584 1559 22485 5585 677 12760 17 13523 4905 26676 882 12638 6085 25928 5659 35782 5781 46320 14 47022 24 47476

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 2

Inmate Record data (cont’d)

BASIC (PARTIAL) QUERY GENERAL TRANSACTION STATISTICS START-UP/GC

(FS)
REQUEST

GENERATION
(FS)

REQUEST
VALIDATION (FS)

START-UP/GC
(BS)

REQUEST
VALIDATION (BS)

RESPONSE GEN
(BS) VALIDATION (BS) VALIDATION (FS) TRANSFORMATION (FS)

Platform Schema Data
Size Network Total

Time, ms

Total
Comm,

ms

Total
Overhead,

ms

Total
Processing,

ms

TCP
Conversation

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB Time, ms RAM,

KB

J2EE Aggregate
(pre-release) Average 100M 19258 180 1746 17332 11956 798 13757 11 15102 3843 23075 948 14835 4545 28772 143 24300 4580 38060 3888 31787 322 33739

J2EE Aggregate
(pre-release) Average 10M 19006 184 1794 17028 11956 813 13577 11 14923 3760 22896 981 14834 4549 28771 147 24299 4495 38059 3745 31608 321 33568

J2EE Aggregate
(pre-release) Average 56K 19690 933 1796 16961 11956 814 13667 11 15012 3764 22986 982 14874 4537 28812 149 24339 4499 38099 3750 31697 251 33650

J2EE Aggregate
(pre-release) Average 9.6K 23694 5048 1801 16845 11956 815 13572 11 14917 3760 22891 986 14839 4501 28759 150 24287 4494 38047 3738 31607 191 33567

J2EE Full
(pre-release) Average 100M 23716 84 1860 21772 11978 837 7810 21 9159 4849 20393 1023 8924 5852 20384 54 21732 5822 32935 4853 32377 321 34414

J2EE Full
(pre-release) Average 10M 23076 237 1730 21109 11978 783 13622 11 14972 4721 26172 947 14836 5804 26255 12 27603 5685 38834 4623 38155 253 40108

J2EE Full
(pre-release) Average 56K 23805 935 1849 21021 11978 901 7833 11 9183 4667 20395 948 8924 5747 20384 12 21732 5720 32935 4646 32380 218 34332

J2EE Full
(pre-release) Average 9.6K 27662 5075 1741 20846 11978 788 13638 11 14988 4645 26200 953 14841 5723 26284 13 27632 5700 38848 4596 38184 158 40137

FULL QUERY

J2EE Aggregate
(pre-release) Minimal 100M 20190 305 1539 18346 14669 739 10556 11 11901 3848 19895 800 11558 4744 25465 161 22673 5060 32777 4015 31255 507 33791

J2EE Aggregate
(pre-release) Minimal 10M 19569 81 1566 17922 14669 762 12587 11 13932 3799 21906 804 12814 4550 26723 166 23933 5023 34020 4132 33284 241 35786

J2EE Aggregate
(pre-release) Minimal 56K 20290 1347 1576 17367 14669 771 12678 11 14023 3682 22015 805 12783 4534 26691 161 23898 4905 34003 3913 33377 161 35829

J2EE Aggregate
(pre-release) Minimal 9.6K 26302 7430 1586 17286 14669 775 12642 11 13987 3683 21961 811 12825 4510 26734 162 23944 4914 34032 3856 33338 150 35791

J2EE Aggregate
(pre-release) Average 100M 20887 264 1962 18661 24777 956 6901 11 8247 3765 16259 1006 6899 4606 20807 379 22632 5245 25588 4181 28067 474 30633

J2EE Aggregate
(pre-release) Average 10M 19645 122 1544 17979 24777 745 12636 12 13981 3703 21973 799 12807 4767 26715 321 28540 5002 31496 3904 33789 270 36347

J2EE Aggregate
(pre-release) Average 56K 22010 2876 1621 17513 24777 815 6827 11 8173 3662 16146 806 6829 4493 20736 326 22562 4920 25519 3866 27983 235 30541

J2EE Aggregate
(pre-release) Average 9.6K 35365 16270 1564 17531 24777 754 12686 11 14032 3671 22005 810 12819 4510 26727 329 28552 4919 31512 3911 33842 180 36400

J2EE Aggregate
(pre-release) Large 100M 24433 541 1541 22351 43290 615 11911 11 13256 4187 22757 926 12664 5332 22403 706 29460 5334 33876 4598 30991 2183 36290

J2EE Aggregate
(pre-release) Large 10M 21886 215 1635 20036 43290 731 6793 11 8138 4174 17633 904 12648 4998 22391 709 29463 5262 33868 4446 25872 436 28217

J2EE Aggregate
(pre-release) Large 56K 27350 6005 1599 19746 43290 694 12572 11 13917 4070 23419 905 12648 4978 22390 702 29297 5276 33725 4329 31665 380 34002

J2EE Aggregate
(pre-release) Large 9.6K 54311 32960 1612 19739 43290 706 6817 11 8162 4052 17643 906 12650 4963 22405 702 29462 5302 33867 4366 25896 343 28232

J2EE Aggregate
(release) Average 100M 128945 1384 7647 119914 1163 8875 20 10532 25679 42603 6484 12926 32970 45539 304 42892 33869 75339 26871 67257 201 69493

J2EE Full
(pre-release) Minimal 100M 24059 150 1515 22394 14691 739 11975 51 13324 4890 24527 776 12508 6057 23966 41 27009 6142 38058 4871 36749 342 39203

J2EE Full
(pre-release) Minimal 10M 22488 89 1577 20822 14691 775 6828 12 8177 4535 19411 802 6829 5753 18287 27 21330 5681 32379 4595 31632 219 34084

J2EE Full
(pre-release) Minimal 56K 23592 1347 1564 20681 14691 754 11792 11 13142 4537 24342 810 12325 5770 23767 27 26810 5688 37877 4502 36543 146 38995

J2EE Full
(pre-release) Minimal 9.6K 29662 7419 1553 20690 14691 759 10463 11 11813 4538 23013 794 10877 5740 22318 28 25361 5694 36428 4534 35240 145 37693

J2EE Full
(pre-release) Average 100M 23747 138 1587 22022 24799 755 12020 12 13370 4605 24570 832 12520 5903 23937 240 31673 6004 35030 4900 37338 358 39914

J2EE Full
(pre-release) Average 10M 22760 126 1589 21045 24799 766 12588 11 13938 4549 25138 823 12761 5777 24219 215 31982 5713 35339 4530 37906 250 40464

J2EE Full
(pre-release) Average 56K 25394 2880 1608 20906 24799 784 6836 11 8186 4527 19419 824 6829 5747 18287 199 26050 5712 29368 4526 32204 184 34763

J2EE Full
(pre-release) Average 9.6K 38773 16251 1599 20923 24799 773 12158 11 13507 4552 24710 826 12758 5760 24192 200 31972 5694 35290 4527 37513 179 40071

J2EE Full
(pre-release) Large 100M 25789 230 1569 23990 43312 737 12608 12 13958 5145 27023 832 12695 6274 25986 688 25249 6051 38442 5129 36103 691 38476

J2EE Full
(pre-release) Large 10M 25250 208 1556 23486 43312 723 10648 11 11997 4967 25042 833 6829 6075 20121 694 19384 6066 32577 5216 34126 457 36475

J2EE Full
(pre-release) Large 56K 30258 5594 1560 23104 43312 727 12649 12 13999 4936 27064 833 12695 6064 25968 682 25249 6064 38445 4999 36140 347 38481

J2EE Full
(pre-release) Large 9.6K 56401 31719 1566 23116 43312 731 10643 11 11993 4921 25059 835 6830 6066 20121 683 19384 6046 32577 5033 34187 356 36553

J2EE Full (release) Average 100M 78004 172 2027 75805 1011 14666 13 16286 16335 39475 1016 13592 20498 37378 268 34875 21327 58245 17102 59125 262 55759

J2EE/Sarvega Full (release) Average 100M 1910 137 1348 425 741 8920 13 10540 0 10540 607 6599 0 6600 192 10107 1 10108 1 12090 218 14294

J2EE SubSchema
(release) Average 100M 99804 238 1845 97721 915 14715 12 16335 16157 39603 930 13659 20677 37431 270 34920 33722 67070 26658 67744 225 64280

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 3

Inmate Record data (cont’d)

TEST CASE SPECIFICS GENERAL TRANSACTION STATISTICS START-UP/GC

(FS)
REQUEST

GENERATION
(FS)

REQUEST
VALIDATION (FS)

START-UP/GC
(BS)

REQUEST
VALIDATION (BS)

DOM-PARSING
REQUEST (BS)

DOM-PARSING OF
STORAGE (BS)

DOM
MANIPULATION

(BS)

SERIALIZATION
AND STORING

(BS)

Platform Schema Data
size Network Total time,

ms
Total

Comm, ms
Total

overhead, ms
Total

processing, ms
TCP

conversation
Time,

ms
RAM,
MB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

ADD ALIAS

.NET Aggregate
(pre-release) Minimal 100M 7463 132 3 7328 5235 1 18080 20 18080 3446 8825 2 15463 3809 13166 2 13166 40 13166 7 13166 4 13166

.NET Aggregate
(pre-release) Minimal 10M 6684 121 3 6560 5235 1 25685 1 25685 3178 31086 2 24673 3361 27940 2 27940 8 27940 6 27940 4 27940

.NET Aggregate
(pre-release) Minimal 56K 7385 295 1 7089 5235 0 25501 1 28380 3203 21028 1 14792 3865 20595 2 20595 8 20595 6 20595 4 20595

.NET Aggregate
 (pre-release) Minimal 9.6K 6546 114 1 6431 5235 0 19241 1 19241 2909 19192 1 12481 3501 12500 2 12500 8 12500 6 12500 4 12500

.NET Aggregate
 (pre-release) Average 100M 7900 121 1 7778 5237 0 8123 1 8123 3390 8555 1 13242 4316 13355 2 13355 50 13355 10 13355 9 13355

.NET Aggregate
(pre-release) Average 10M 6523 116 1 6406 5237 0 31086 1 31086 2995 19249 1 1333 3376 12716 2 12716 15 12716 10 12716 7 12716

.NET Aggregate
(pre-release) Average 56K 6858 115 2 6741 5237 1 21028 1 21028 3005 20036 1 20595 3701 25585 2 25585 15 25585 10 25585 7 25585

.NET Aggregate
(pre-release) Average 9.6K 7030 116 1 6913 5237 0 19192 1 19192 3186 20775 1 12500 3692 17399 2 17399 15 17399 10 17399 7 17399

.NET Aggregate
(pre-release) Large 100M 7030 118 1 6911 5236 0 9300 1 9300 3383 9748 1 13503 3468 13511 2 13511 27 13511 17 13511 13 13511

.NET Aggregate
(pre-release) Large 10M 6692 116 1 6575 5236 0 19249 1 19249 2934 19184 1 12716 3580 12784 2 12784 28 12784 17 12784 13 12784

.NET Aggregate
(pre-release) Large 56K 6804 117 1 6686 5236 0 20036 1 20036 2986 19835 1 25585 3640 12632 2 12632 27 12632 17 12632 13 12632

.NET Aggregate
(pre-release) Large 9.6K 6668 117 1 6550 5236 0 20775 1 20775 3003 20042 1 17399 3485 22429 2 22429 28 22429 18 22429 13 22429

.NET Full (pre-release) Minimal 100M 11168 142 3 11023 5241 1 9439 1 9439 5297 11861 2 13528 5704 15570 2 15570 8 15570 6 15570 5 15570

.NET Full (pre-release) Minimal 10M 10657 115 3 10539 5241 1 19184 1 19184 4748 21726 2 12784 5770 19890 2 19890 8 19890 6 19890 4 19890

.NET Full (pre-release) Minimal 56K 10704 117 1 10586 5241 0 19835 1 19835 4811 21739 1 12632 5754 19698 2 19698 8 19698 6 19698 4 19698

.NET Full (pre-release) Minimal 9.6K 10629 115 3 10511 5241 1 20042 1 20042 4833 21998 2 22429 5657 14375 2 14375 8 14375 6 14375 4 14375

.NET Full (pre-release) Average 100M 11475 119 1 11355 5243 0 11425 1 11425 5402 11921 1 15022 5888 22822 2 22822 44 22822 10 22822 8 22822

.NET Full (pre-release) Average 10M 10674 115 1 10558 5243 0 21726 1 21726 4818 21016 1 19890 5705 14833 2 14833 15 14833 10 14833 7 14833

.NET Full (pre-release) Average 56K 10660 115 2 10543 5243 1 21739 1 21739 4814 21190 1 19698 5694 14660 2 14660 15 14660 10 14660 7 14660

.NET Full (pre-release) Average 9.6K 10618 116 1 10501 5243 0 21998 1 21998 4844 21453 1 14375 5622 14440 2 14440 15 14440 10 14440 7 14440

.NET Full (pre-release) Large 100M 10762 118 2 10642 5242 0 11690 1 11690 4672 23742 2 30491 5883 16953 2 16953 54 16953 17 16953 13 16953

.NET Full (pre-release) Large 10M 11468 117 1 11350 5242 0 21016 1 21016 5144 25931 1 14833 6145 22498 2 22498 27 22498 18 22498 13 22498

.NET Full (pre-release) Large 56K 11253 115 1 11137 5242 0 21190 1 21190 5160 26247 1 14660 5915 22352 2 22352 28 22352 18 22352 13 22352

.NET Full (pre-release) Large 9.6K 11583 745 1 10837 5242 0 21453 1 21453 4984 23611 1 16990 5793 17032 2 17032 28 17032 17 17032 12 17032

UPDATE ADDRESS

.NET Aggregate
(pre-release) Minimal 100M 7065 124 3 6938 6972 1 26070 24 26070 3152 19909 2 24014 3724 13459 3 13459 8 13459 23 13459 4 13459

.NET Aggregate
(pre-release) Minimal 9.6K 8050 1393 3 6654 6972 1 19661 1 19661 2943 30004 2 17032 3688 21964 3 21964 8 21964 7 21964 4 21964

.NET Aggregate
(pre-release) Average 100M 6619 121 1 6497 6973 0 19568 1 19568 2982 19389 1 13568 3482 13792 3 13792 15 13792 7 13792 7 13792

.NET Aggregate
(pre-release) Average 9.6K 7976 1396 1 6579 6973 0 30004 1 30004 2887 19514 1 21964 3345 25195 3 25195 330 21921 7 21921 6 21921

.NET Aggregate
(pre-release) Large 100M 6685 124 1 6560 6972 0 19123 1 19123 2936 19042 1 14071 3574 14316 3 14316 27 14316 7 14316 12 14316

.NET Aggregate
(pre-release) Large 9.6K 7641 1392 1 6248 6972 0 19514 1 19514 2850 19527 1 21921 3347 25174 3 25174 28 25174 7 25174 12 25174

.NET Full (pre-release) Minimal 100M 11405 123 3 11279 6977 1 19042 12 19042 5182 23420 2 14316 6063 16634 3 16634 8 16634 7 16634 4 16634

.NET Full (pre-release) Minimal 9.6K 11790 1575 3 10212 6977 1 19527 1 19527 4813 21122 2 13923 5376 28816 3 28816 8 28816 7 28816 4 28816

.NET Full (pre-release) Average 100M 10842 121 1 10720 6978 0 23420 1 23420 4871 22220 1 16634 5817 16196 3 16196 15 16196 7 16196 6 16196

.NET Full (pre-release) Average 9.6K 12515 1422 1 11092 6978 0 21122 1 21122 5142 25945 1 28816 5694 14351 3 14351 239 17259 7 17259 6 17259

.NET Full (pre-release) Large 100M 11085 125 1 10959 6977 0 22220 1 22220 4841 22017 1 16196 6068 23461 3 23461 27 23461 7 23461 12 23461

.NET Full (pre-release) Large 9.6K 12341 1396 1 10944 6977 0 25945 1 25945 5029 22285 1 17259 5865 25016 3 25016 27 25016 7 25016 12 25016

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 4

Inmate Record data (cont’d)

BASIC (PARTIAL) QUERY General transaction statistics Startup/GC (FS)

REQUEST
GENERATION

(FS)
REQUEST

VALIDATION (FS)
START-UP/GC

(BS)
REQUEST

VALIDATION (BS)
RESPONSE GEN

(BS) VALIDATION (BS) VALIDATION (FS) TRANSFORMATION
(FS)

Platform Schema Data
Size Network Total time,

ms

Total
Comm,

ms

Total
overhead,

ms

Total
processing,

ms

TCP
conversation

Time,
ms

RAM,
MB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
MB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

.NET Aggregate
(pre-release) Average 100M 13952 170 3 13779 13588 1 22017 27 22017 2920 19771 2 23461 3658 28921 28 28921 3665 13908 3212 21620 269 21620

.NET Aggregate
(pre-release) Average 10M 13827 124 3 13700 13588 1 25931 1 25931 3179 20121 2 22498 3632 12499 2 12499 3723 17444 3137 24734 26 24734

.NET Aggregate
(pre-release) Average 56K 11253 115 1 11137 13588 0 21190 1 21190 5160 26247 1 14660 5915 22352 2 22352 28 22352 18 22352 13 22352

.NET Aggregate
(pre-release) Average 9.6K 16856 3935 3 12918 13588 1 22285 1 22285 2860 20061 2 25016 3547 14302 2 14302 3303 12482 3179 21781 26 21781

.NET Full
(pre-release) Average 100M 22368 125 3 22240 13580 1 31202 18 31202 5192 23319 2 12485 6011 19378 19 19378 5729 14453 5230 26758 41 26758

.NET Full
(pre-release) Average 10M 22086 122 2 21962 13580 1 24734 2 24734 4851 26955 1 17444 5628 14827 2 14827 5935 22621 5518 28923 26 28923

.NET Full
(pre-release) Average 56K 22878 791 3 22084 13580 1 24807 1 24807 4848 27132 2 19007 5816 26650 2 26650 5864 16758 5527 28830 26 28830

.NET Full
(pre-release) Average 9.6K 28781 7571 3 21207 13580 1 21781 1 21781 4852 26474 2 12482 5542 14493 2 14493 5550 15200 5234 24858 26 24858

FULL QUERY

.NET Aggregate
(pre-release) Minimal 100M 14621 134 1 14486 16371 0 32975 1 32975 3087 20581 1 24074 3748 13113 2 13113 4134 18306 3477 24964 37 24964

.NET Aggregate
(pre-release) Minimal 10M 14633 368 1 14264 16371 0 28923 1 28923 3092 30323 1 22621 3647 12617 2 12617 4115 17709 3370 36078 37 36078

.NET Aggregate
(pre-release) Minimal 56K 15315 1461 3 13851 16371 1 28830 1 28830 3114 30607 2 16758 3324 20143 2 20143 4009 14742 3364 35697 37 35697

.NET Aggregate
(pre-release) Minimal 9.6K 27784 13456 1 14327 16371 0 24858 1 24858 3053 30711 1 15200 3639 12961 2 12961 4111 18096 3484 25116 37 25116

.NET Aggregate
(pre-release) Average 100M 14777 148 1 14628 26894 0 24964 1 24964 3045 26074 1 18306 3764 23516 3 23516 4196 13264 3556 32624 63 32624

.NET Aggregate
(pre-release) Average 10M 14580 430 1 14149 26894 0 36078 1 36078 2888 19343 1 17709 3593 12524 3 12524 4099 17726 3513 25147 52 25147

.NET Aggregate
(pre-release) Average 56K 17061 2956 1 14104 26894 0 35697 2 35697 3132 20614 1 14742 3371 12448 3 12448 4050 14172 3494 24973 52 24973

.NET Aggregate
(pre-release) Average 9.6K 39719 25361 1 14357 26894 0 25116 1 25116 3052 26143 1 18096 3616 12803 3 12803 4116 17916 3517 33051 52 33051

.NET Aggregate
(pre-release) Large 100M 14802 179 1 14622 46135 0 32624 1 32624 2923 20143 1 13264 3765 18482 4 18482 4263 23650 3589 21930 77 21930

.NET Aggregate
(pre-release) Large 10M 14662 196 1 14465 46135 0 25147 1 25147 3015 26270 1 17726 3558 12483 4 12483 4305 19808 3506 32931 76 32931

.NET Aggregate
(pre-release) Large 56K 20430 5769 1 14660 46135 0 24973 1 24973 3043 26240 1 14172 3726 19466 4 19466 3925 14010 3885 25629 76 25629

.NET Aggregate
(pre-release) Large 9.6K 55899 41661 1 14237 46135 0 33051 1 33051 2941 20256 1 17916 3576 12613 4 12613 4123 17746 3516 22001 76 22001

.NET Aggregate
(release) Average 100M 832395 1282 1 831112 0 40463 2 40463 176126 40216 1 36559 234923 36483 16 36483 235772 36947 184208 67319 65 67319

.NET Full
(pre-release) Minimal 100M 22180 132 1 22047 16391 0 26153 1 26153 5195 21514 1 22274 5628 14388 2 14388 5992 14183 5192 26738 37 26738

.NET Full
(pre-release) Minimal 10M 21733 130 1 21602 16391 0 32931 1 32931 4869 22247 1 19808 5813 16634 2 16634 5742 16554 5137 25810 38 25810

.NET Full
(pre-release) Minimal 56K 22800 1227 1 21572 16391 0 25629 1 25629 4855 27510 1 14010 5670 15672 2 15672 5595 15118 5412 26264 37 26264

.NET Full
(pre-release) Minimal 9.6K 28296 6458 1 21837 16391 0 22001 1 22001 5106 29380 1 17746 5595 14529 2 14529 5899 22223 5197 27017 37 27017

.NET Full
(pre-release) Average 100M 22454 148 1 22305 26914 0 26719 1 26719 4997 32475 1 22551 5754 14621 2 14621 6086 22408 5408 25220 57 25220

.NET Full
(pre-release) Average 10M 22247 338 1 21908 26914 0 25810 2 25810 5198 20950 1 16554 5988 23977 3 23977 5692 15378 4973 25252 52 25252

.NET Full
(pre-release) Average 56K 24939 2744 1 22194 26914 0 26264 1 26264 5134 34973 1 15118 5866 22934 3 22934 5936 30772 5202 26317 52 26317

.NET Full
(pre-release) Average 9.6K 37320 15285 1 22034 26914 0 27017 1 27017 4986 32791 1 22223 5683 14443 3 14443 6008 14222 5301 25325 52 25325

.NET Full
(pre-release) Large 100M 22387 178 3 22206 46157 1 27939 1 27939 5037 22778 2 22408 5702 14527 4 14527 6110 22274 5274 26153 78 26153

.NET Full
(pre-release) Large 10M 22329 335 1 21993 46157 0 25252 1 25252 4990 22017 1 15378 5994 22959 4 22959 5679 14792 5247 25501 78 25501

.NET Full
(pre-release) Large 56K 28006 5801 1 22204 46157 0 26317 1 26317 5334 23702 1 30772 5885 17192 4 17192 5914 24984 4988 25220 78 25220

.NET Full
(pre-release) Large 9.6K 53930 31586 3 22341 46157 1 26259 1 26259 5204 21562 2 24680 5782 16460 4 16460 6056 24011 5217 26612 77 26612

.NET Full (release) Average 100M 470922 149 3 470770 1 13867 38 13867 100676 28594 2 38984 134333 26001 12 26001 134425 25862 101219 46631 67 46631

.NET SubSchema
(release) Average 100M 654762 5967 357 648438 343 6961 26 6961 100984 27026 14 7324 135924 26067 20 26067 234934 38770 176461 57036 89 57036

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 5

AMBER Alert (+tags) data

TEST CASE SPECIFICS GENERAL TRANSACTION STATISTICS Setup/GC (FS) Startup/GS (BS) Response generation (BS) Response

validation (BS)
Response

validation (FS)
Response

transformation (FS)

Platform Schema Data
Size Network

Total
Time,

ms

Total
Communication,

ms

Total
Overhead,

ms

Total
Processing,

ms

TCP
Conversation

BS-FS
traffic

RAM,
KB

TCP
conversation

RAM,
KB

RAM,
KB

Time,
ms

RAM,
KB Time, ms RAM, KB Time,

ms
RAM,

KB
Time,

ms
RAM,

KB
Time,

ms RAM, KB

J2EE Full (release) Average 100M 40208 58 1714 38436 1611 8636 10247 8647 818 13544 896 7155 21 9584 21627 27824 16587 38604 201 34416

J2EE Full (release) Average 10M 40068 66 1691 38311 1611 8636 10247 8647 820 12185 871 13181 22 15610 21551 33858 16557 37224 181 33026

J2EE Full (release) Average 56K 40663 783 1741 38139 1809 8702 10511 8647 848 8056 893 13061 23 15490 21356 33748 16563 33095 197 28897

J2EE Full (release) Average 9.6K 44118 4246 1699 38173 1677 8636 10313 8647 822 13611 877 12908 21 15337 21402 33577 16567 38650 183 34452

J2EE/Sarvega Full (release) Average 100M 1481 63 1253 165 1611 8636 10247 8647 640 8433 613 6456 22 8885 1 8886 0 9074 142 10404

J2EE/Sarvega Full (release) Average 9.6K 6537 5120 1250 167 1677 8636 10313 8647 649 8406 601 6507 23 8936 0 8937 1 9047 143 10361

J2EE Sub-schema
(release) Average 100M 62661 90 1577 60994 1480 6634 8114 8647 802 7160 775 12509 48 14940 34073 42165 26688 40927 185 36889

J2EE Sub-schema
(optimized) Average 100M 32805 49 1685 31071 1480 6634 8114 8647 814 15092 871 13107 22 15536 17305 35475 13635 36471 109 37785

J2EE Sub-schema
(optimized) Average 9.6K 38206 5539 1762 30905 1756 8148 9904 8647 889 9052 873 7582 22 10011 17275 29967 13522 30435 86 31749

REDUCED TAG NAMES

J2EE Aggregate (release) Average 10M 33326 79 1600 31647 1486 4947 6433 5164 785 8054 815 13183 10 14326 17794 34139 13729 28613 114 29909

J2EE Aggregate (release) Average 56K 33609 247 1591 31771 1484 4950 6434 5164 775 12288 816 13063 10 14206 17916 34020 13713 32885 132 34181

J2EE Aggregate (release) Average 9.6K 35650 2504 1590 31556 1484 4950 6434 5164 773 13638 817 7137 10 8280 17705 28076 13720 34255 121 35551

J2EE Full (release) Average 100M 40529 54 1638 38837 1486 4947 6433 5163 811 8162 827 13281 45 14421 22185 35319 16443 30124 164 31419

J2EE Full (release) Average 10M 39521 53 1614 37854 1486 4947 6433 5163 784 13903 830 13294 10 14434 21250 35330 16470 35866 124 37161

J2EE Full (release) Average 56K 39702 246 1615 37841 1486 4947 6433 5163 786 14173 829 7244 9 8385 21196 29256 16529 36134 107 37429

J2EE Full (release) Average 9.6K 40568 1150 1617 37801 1486 4947 6433 5163 788 13773 829 12920 10 14060 21221 34955 16466 35735 104 37031

STANDARD TAG NAMES

.NET Aggregate (release) Average 100M 424138 1413 367 422358 982 8533 9515 8909 367 8728 0 39590 2 39590 240438 37635 181688 38614 230 40464

.NET Aggregate (release) Average 9.6K 428347 5627 2 422718 1522 16183 17705 8909 1 40190 1 36839 2 36839 241693 36837 180818 39093 205 40710

.NET Aggregate Flat
(release) Average 100M 1160910 35 2 1160873 926 8020 8946 8400 1 40464 1 37635 18 37635 658976 84312 501836 87155 43 87155

.NET Aggregate Flat
(release) Average 9.6K 1171087 10162 2 1160923 1526 14644 16170 8400 1 40710 1 36837 13 36837 660906 85163 499980 87821 24 86677

.NET Full (release) Average 100M 246636 88 176 246372 984 8630 9614 8908 175 23734 1 15305 2 15305 140220 27202 106106 28765 44 28765

BASIC (PARTIAL) QUERY

.NET Sub-Schema
(release) Average 100M 421676 90 2 421584 985 8630 9615 8908 1 40543 1 39165 2 39165 240806 37569 180751 38462 25 38462

.NET Sub-schema
(optimized) Average 100M 190028 123 0 189905 985 8630 9615 8908 0 25298 0 23289 2 23289 108060 23150 81693 25027 150 26612

.NET Sub-schema
(optimized) Average 9.6K 193686 3945 0 189741 1525 18408 19933 8908 0 24384 0 24346 2 24346 107748 23289 81965 25298 26 25298

.NET/Sarvega Full (release) Average 100M 120 93 0 27 985 8630 9615 8908 0 7776 0 6944 2 6944 0 6944 0 7776 25 7776

.NET/Sarvega Full (release) Average 9.6K 12301 12274 0 27 1525 18408 19933 8908 0 9356 0 6944 2 6944 0 6944 0 9356 25 9356

FULL QUERY

.NET Full (release) Average 100M 247881 1084 2 246795 931 4929 5860 5422 1 25441 1 22323 2 22323 141057 26034 105712 27879 24 27879

.NET Full (release) Average 9.6K 249712 2019 2 247691 1291 8399 9690 5422 1 24636 1 22818 10 22818 141711 27414 105946 28287 24 28287

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 6

Incident Report data

TEST CASE SPECIFICS GENERAL TRANSACTION STATISTICS Setup/GC (FS) Request generation

(FS)
Request validation

(FS)
Request

transformation (FS) Setup/GC (BS) Request validation
(BS)

Platform Schema Data Size Network Total Time, ms

Total
Comm-

unication,
ms

Total
Overhead,

ms

Total Pro-
cessing,

ms

TCP
Conversation

BS-FS
traffic

RAM,
KB

TCP
conversation

RAM,
KB

RAM,
KB

Time,
ms

RAM,
KB Time, ms RAM,

KB
Time,

ms
RAM,

KB
Time,

ms
RAM,

KB
Time,

ms
RAM,

KB

J2EE Aggregate
(release) Minimal 100M 63834 196 1725 61913 12144 1705 13849 11787 800 13540 44 18650 25929 44895 3001 45407 925 12987 32939 46374

J2EE Aggregate
(release) Minimal 10M 63599 129 1709 61761 12210 1705 13915 11787 823 7431 44 12541 25877 38703 3001 39255 886 13611 32839 46995

J2EE Aggregate
(release) Minimal 56K 64512 1180 1696 61636 13790 1839 15629 11787 811 13382 44 18492 25789 44739 2997 45916 885 12539 32806 45907

J2EE Aggregate
(release) Minimal 9.6K 70009 6508 1663 61838 12276 1771 14047 11787 786 12499 44 17609 26012 43748 3003 45328 877 7639 32779 41024

J2EE Aggregate
(release) Average 100M 67092 292 1785 65015 27813 2365 30178 26796 878 7552 317 15305 26257 40713 5140 44350 907 13616 33301 47034

J2EE Aggregate
(release) Average 10M 66052 160 1747 64145 27813 2365 30178 26796 797 13501 301 21233 25790 46623 5170 51123 950 7699 32884 41167

J2EE Aggregate
(release) Average 56K 69387 3546 1706 64135 27945 2431 30376 26796 793 13453 302 21206 25798 46614 5178 50319 913 12606 32857 46072

J2EE Aggregate
(release) Average 9.6K 86153 20316 1708 64129 27879 2365 30244 26796 795 13183 302 20936 25783 46352 5155 50308 913 13600 32889 47066

J2EE Aggregate
(release) Large 100M 75001 426 1865 72710 56280 2695 58975 54009 831 13369 1253 14575 26356 47785 11508 52238 1034 7794 33593 41249

J2EE Aggregate
(release) Large 10M 73428 403 1712 71313 56412 3091 59503 54009 822 7486 1233 8692 25808 41932 11388 47230 890 13753 32884 47209

J2EE Aggregate
(release) Large 56K 81270 8026 1713 71531 56412 3091 59503 54009 823 7432 1236 8637 25813 41859 11578 47258 890 12702 32904 46175

J2EE Aggregate
(release) Large 9.6K 117876 44552 1714 71610 56412 3685 60097 54009 822 13211 1236 14416 25828 47641 11619 53254 892 13696 32927 47170

J2EE Aggregate
(release) Average 100M 67092 292 1785 65015 27813 2365 30178 26796 878 7552 317 15305 26257 40713 5140 44350 907 13616 33301 47034

J2EE Subschema
(release) Minimal 10M 41405 174 1697 39534 12604 1771 14375 12115 788 13371 46 18699 16619 35890 1886 39996 909 13602 20983 37903

J2EE Subschema
(release) Minimal 56K 42691 1447 1727 39517 12604 1771 14375 12115 788 13304 46 18631 16613 35822 1873 40202 939 7636 20985 31957

J2EE Subschema
(release) Minimal 9.6K 48914 7682 1705 39527 12742 1639 14381 12115 795 7429 46 12756 16615 29874 1878 40211 910 13685 20988 38006

J2EE Subschema
(release) Average 100M 44201 208 1659 42334 28798 2551 31349 27715 777 13425 332 14555 16596 38506 4146 38961 882 13741 21260 38073

J2EE Subschema
(release) Average 10M 43814 203 1675 41936 28798 2431 31229 27715 786 7433 319 8563 16546 32514 4066 39345 889 13752 21005 38082

J2EE Subschema
(release) Average 56K 47520 3838 1675 42007 28930 2497 31427 27715 787 13352 319 14461 16572 38412 4079 37026 888 12442 21037 36744

J2EE Subschema
(release) Average 9.6K 65268 21509 1697 42062 28864 2431 31295 27715 783 12887 320 14017 16585 37986 4146 33549 914 7719 21011 32050

J2EE Subschema
(release) Large 100M 51545 374 1684 49487 56405 2893 59298 50217 820 7424 1284 12400 16740 29588 10286 42265 864 13857 21177 38262

J2EE Subschema
(release) Large 10M 51298 261 1653 49384 57919 3157 61076 50217 789 11944 1281 16920 16730 34107 10280 42787 864 7797 21093 32102

J2EE Subschema
(release) Large 56K 59001 8045 1654 49302 57919 3157 61076 50217 789 13358 1277 18334 16701 35491 10226 36774 865 13548 21098 37874

J2EE Subschema
(release) Large 9.6K 96605 55913 1655 39037 57853 3685 61538 50217 790 12914 1280 17890 16694 35077 865 12604 21063 37009

J2EE Full External
(release) Minimal 10M 62211 130 1712 60369 14047 1783 15830 12109 791 11712 46 17053 26320 34388 1891 34899 921 7640 32112 32001

J2EE Full External
(release) Minimal 56K 628959 1370 1699 625890 14046 1783 15829 12109 811 7432 47 12773 310548 30404 1912 41198 888 13634 3E+05 38317

J2EE Full External
(release) Minimal 9.6K ~ 1 hour (est.) 0

J2EE Full External
(release) Average 100M 64974 264 1630 63080 2431 28787 31218 27704 775 13343 335 14472 27257 38545 4067 33991 855 12271 31421 36822

J2EE Full External
(release) Average 10M 66238 295 1634 64309 2497 28919 31416 27704 778 12659 319 13789 27485 37842 4054 39126 856 12122 32451 36673

J2EE Full External
(release) Average 56K ~ 10 minutes

(est.) 0

J2EE Full External
(release) Average 9.6K ~ 1 hour (est.) 0

J2EE Full External
(release) Large 100M 70242 322 1656 68264 2893 57908 60801 55439 790 13376 1277 18352 26560 35717 10265 41941 866 13769 30162 38318

J2EE Full External
(release) Large 10M 75972 341 1659 73972 3091 57842 60933 55439 792 13371 1275 18347 26438 35788 10207 43559 867 13616 36052 38164

J2EE Full External
(release) Large 56K ~ 10 minutes

(est.)

J2EE Full External
(release) Large 9.6K ~ 1 hour (est.)

J2EE Full Local (release) Minimal 100M 41684 569 1526 39589 764 12819 48 18161 16501 35237 2135 39640 762 10892 20905 35230

J2EE Full Local (release) Minimal 9.6K 49128 8536 1517 39075 732 12884 55 18225 16320 35173 2062 39520 785 6494 20638 30831

J2EE Full Local (release) Average 100M 44850 213 1473 43164 738 13253 329 14382 16480 38306 4256 39243 735 12227 22099 36472

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 7

Incident Report data (cont’d)

BASIC (PARTIAL) QUERY GENERAL TRANSACTION STATISTICS Setup/GC (FS) Request

generation (FS)
Request

validation
(FS)

Request
Validation

(BS)
Request trans-
formation (FS) Setup/GC (BS) Request validation

(BS)

Platform Schema Data Size Network Total
Time, ms

Total
Communication,

ms

Total
Overhead,

ms

Total
Processing,

ms

TCP
Conversation

BS-FS
traffic

RAM,
KB

TCP
conversation

RAM,
KB

RAM,
KB

Time,
ms

RAM,
KB Time, ms RAM, KB Time,

ms
RAM,

KB
Time,

ms
RAM,

KB
Time,

ms
RAM,

KB

.NET Aggregate (release) Minimal 100M 416772 135 2 416635 11766 1013 12779 11909 1 29728 2 29728 178744 41359 227 41359 1 27577 2E+05 37936

.NET Aggregate (release) Minimal 9.6K 422666 6392 2 416272 23360 4077 27437 11909 1 34760 2 34760 177993 41312 457 44057 1 29939 2E+05 38482

.NET Aggregate (release) Average 100M 415081 140 2 414939 27557 1283 28840 27160 1 41359 3 41359 177601 40424 324 40424 1 37936 2E+05 37400

.NET Aggregate (release) Average 9.6K 453112 37915 2 415195 57970 5319 63289 27160 1 44057 3 44057 177986 40897 308 40897 1 38482 2E+05 38214

.NET Aggregate (release) Large 100M 417530 385 2 417143 56295 1769 58064 54872 1 40424 5 40424 178040 39345 806 42756 1 39604 2E+05 38776

.NET Aggregate (release) Large 9.6K 494878 80789 2 414087 110859 5316 116175 54872 1 37208 5 37208 178406 43452 604 43452 1 39446 2E+05 40036

FULL QUERY

.NET Subschema (release) Average 100M 240750 108 2 240640 28537 1283 29820 28086 1 41564 3 41564 102833 34365 318 34365 1 27879 1E+05 27636

.NET Subschema (release) Average 9.6K 259838 20322 2 239514 28597 2400 30997 28086 1 42414 3 42414 103312 33602 326 33602 1 28156 1E+05 28139

.NET Subschema (release) Large 100M 242236 378 2 241856 57790 1823 59613 56313 1 34365 19 34365 103140 33433 850 34760 1 29856 1E+05 29939

.NET Subschema (release) Large 9.6K 284228 44266 2 239960 57910 4057 61967 56313 1 33602 5 33602 103297 33019 842 35856 1 28139 1E+05 28813

.NET Full External
(release) Minimal 100M 269970 84 2 269884 12093 1013 13106 12236 1 35856 2 35856 119901 34004 408 36545 1 28813 1E+05 28419

.NET Full External
(release) Minimal 9.6K ~6 hours

(est.)

.NET Full External
(release) Average 100M 267476 108 2 267366 28525 1283 29808 28074 1 36545 3 36545 117186 33173 567 35956 1 28419 1E+05 28657

.NET Full External
(release) Average 9.6K ~6 hours

(est.)

.NET Full External
(release) Large 100M 270497 148 2 270347 57778 1823 59601 56301 1 35956 26 35956 120440 33264 798 35944 1 28657 1E+05 27203

.NET Full External
(release) Large 9.6K ~6 hours

(est.) 0 0

.NET Full Local (release) Minimal 100M 245818 7612 350 237856 342 8942 43 8942 101945 27650 587 29834 8 27127 1E+05 26518

.NET Full Local (release) Minimal 9.6K 242497 6758 2 235737 1 30169 2 30169 101086 30569 220 30569 1 26657 1E+05 27044

.NET Full Local (release) Average 100M 236699 378 2 236319 1 29834 33 29834 102021 27933 556 30400 1 26518 1E+05 26594

.NET Full Local (release) Average 9.6K 256738 20296 2 236440 1 30569 3 30569 101794 30380 324 30380 1 27044 1E+05 26422

.NET Full Local (release) Large 100M 237936 532 2 237402 1 30400 39 30400 101773 28072 817 30169 1 26594 1E+05 26657

.NET Full Local (release) Large 9.6K 280826 44606 2 236218 1 30380 5 30380 100866 28538 863 31899 1 26422 1E+05 27503

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 8

Field Report data

TEST CASE SPECIFICS GENERAL TRANSACTION STATISTICS REQUEST

GENERATION (FS)
REQUEST

VALIDATION (FS) START-UP/GC (BS) REQUEST
VALIDATION (BS)

DOM-PARSING
REQUEST (BS)

DOM-PARSING OF
STORAGE (BS)

DOM MANIPULATION
(BS)

Platform Schema Data Size Network
Total
Time,

ms

Total
Comm-

unication,
ms

Total
Overhead,

ms

Total
Processing,

ms

TCP
Conversation

Total
traffic

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB Time, ms RAM, KB Time,

ms
RAM,

KB

J2EE SubSchema (optimized) Average 100M 7284 82 7202 1 48646 1431 52617 2470 16876 5 17336 1760 21602 1534 57512 1 57512

J2EE SubSchema (optimized) Average 9.6K 7862 625 7237 1 46775 1419 51221 2570 15379 4 15839 1795 20102 1447 48408 1 48408

.NET SubSchema (optimized) Average 100M 3714 734 2980 1 6056 416 6056 547 7042 1 9726 789 10110 601 10110 625 10110

.NET SubSchema (optimized) Average 9.6K 3268 643 2625 1 14860 360 14860 477 14860 1 10110 607 10110 460 10110 719 11010

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 9

RAP Sheet data

TEST CASE SPECIFICS GENERAL TRANSACTION STATISTICS REQUEST

GENERATION (FS)
REQUEST

VALIDATION (FS) START-UP/GC (BS) REQUEST
VALIDATION (BS)

DOM-PARSING
REQUEST (BS)

DOM-PARSING OF
STORAGE (BS)

DOM MANIPU-
LATION (BS)

Platform Schema Data Size Network
Total
Time,

ms

Total
Comm-

unication,
ms

Total
Over-

head, ms

Total Pro-
cessing,

ms

TCP
Conversation

Total
traffic

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

J2EE Aggregate
(pre-release) Minimal 100M 19528 124 19404 3222 17748 20970 19040 2 66071 3889 72914 4906 85257 157 89427 5576 93464 4575 78983 299 80548

J2EE Aggregate
(pre-release) Minimal 10M 18602 156 18446 3420 17748 21168 19040 2 84110 3813 91119 4796 87312 154 91212 5322 103047 4228 97049 131 98556

J2EE Aggregate
(pre-release) Minimal 56K 20808 2338 18470 3828 19262 23090 19040 2 98604 3770 112530 4802 108008 153 112184 5338 116560 4288 118332 117 119839

J2EE Aggregate
(pre-release) Minimal 9.6K 34776 12761 22015 3750 17748 21498 19040 1 119521 5351 27996 6569 23031 151 27155 5469 31499 4343 33767 131 35274

J2EE Aggregate
(pre-release) Average 100M 19216 154 19062 3420 29785 33205 30483 2 57155 3829 63855 4740 75362 435 70999 5330 82914 4423 70448 303 72052

J2EE Aggregate
(pre-release) Average 10M 18900 131 18769 3486 29719 33205 30483 2 99055 3810 105266 4781 110136 429 105661 5342 117432 4254 119648 151 121252

J2EE Aggregate
(pre-release) Average 56K 26063 3817 22246 4212 29719 33931 30483 2 120321 5474 22283 6501 26054 418 21477 5414 33334 4238 36714 199 31151

J2EE Aggregate
(pre-release) Average 9.6K 40238 21554 18684 4278 29719 33997 30483 2 36010 3806 42466 4769 46133 430 41729 5272 53631 4213 56902 192 51235

J2EE Aggregate
(pre-release) Large 100M 20184 253 19931 3616 42221 45837 42323 2 33849 3745 47507 4957 55520 819 56473 5565 60806 4477 54758 366 56425

J2EE Aggregate
(pre-release) Large 10M 22979 198 22781 3748 42089 45837 42323 2 114526 5457 25040 6731 20448 773 21630 5339 33492 4308 32021 171 33704

J2EE Aggregate
(pre-release) Large 56K 24713 5592 19121 4738 42089 46827 42323 2 31721 3779 45442 4875 40459 778 41396 5268 53328 4242 52579 177 54246

J2EE Aggregate
(pre-release) Large 9.6K 50733 31721 19012 4870 42155 47025 42323 2 51874 3759 65443 4791 60855 785 61936 5291 73761 4224 72874 160 74541

J2EE Aggregate
(pre-release) Average 100M 19216 154 19062 3420 29785 33205 30483 2 57155 3829 63855 4740 75362 435 70999 5330 82914 4423 70448 303 72052

J2EE Aggregate (release) Average 9.6K 162009 39611 122398 4278 29719 33997 30483 2 78086 26302 102934 33506 68293 652 69254 33584 94806 28228 38605 124 40251

J2EE Full (pre-release) Minimal 100M 23023 220 22803 3366 17758 21124 19062 2 96122 4890 109473 6245 107849 232 104488 6242 117201 4995 116988 197 118516

J2EE Full (pre-release) Minimal 10M 22787 84 22703 3366 17758 21124 19062 2 34345 5010 40704 6222 40471 148 44176 6220 56915 4918 55207 183 56800

J2EE Full (pre-release) Minimal 56K 24504 2112 22392 3762 17758 21520 19062 2 54936 4944 61134 6210 60149 153 64010 6075 76749 4882 75688 126 77196

J2EE Full (pre-release) Minimal 9.6K 33962 11465 22497 4374 17758 22132 19062 1 75294 5019 81304 6218 80500 158 84551 6100 97266 4886 95863 115 97371

J2EE Full (pre-release) Average 100M 22954 147 22807 3300 29729 33029 30505 2 60514 4928 66786 6100 69976 460 66108 6141 79426 5023 81867 153 83492

J2EE Full (pre-release) Average 10M 22945 167 22778 3630 29861 33491 30505 2 57347 4967 63706 6172 63890 419 67249 6097 79991 4939 78891 182 80496

J2EE Full (pre-release) Average 56K 26541 3795 22746 4224 29729 33953 30505 2 77658 4933 84009 6215 83631 426 87026 6157 99769 4874 99097 139 100703

J2EE Full (pre-release) Average 9.6K 45738 22895 22843 4290 29729 34019 30505 1 97876 4934 104251 6316 104032 414 107664 6116 120403 4922 119566 140 121171

J2EE Full (pre-release) Large 100M 23521 235 23286 3430 42231 45661 42345 2 35978 4841 49376 6090 49420 828 51035 6288 56201 5060 58136 177 59804

J2EE Full (pre-release) Large 10M 23667 203 23464 3628 42099 45727 42345 2 81073 4939 87366 6206 87014 852 87796 6331 100952 4940 103179 194 104848

J2EE Full (pre-release) Large 9.6K 58529 31661 26868 4882 42165 47047 42345 1 114866 6607 21928 8236 21478 771 22532 6119 35487 4901 38137 233 32841

J2EE Full (release) Average 100M 79340 328 79012 3300 29729 33029 30505 2 77962 16637 94024 22635 59138 523 60148 22267 77089 16832 113975 116 115575

J2EE Full (release) Average 9.6K 109417 31837 77580 4290 29729 34019 30505 2 42127 16472 58456 20847 114069 478 121730 22976 31527 16699 78553 106 80152

J2EE /
Sarvega Full (release) Average 100M 1095 254 841 3300 29729 33029 30505 82 11234 1 11234 1 9181 402 8331 1 8332 0 13269 354 14919

J2EE /
Sarvega Full (release) Average 9.6K 31760 30987 773 4290 29729 34019 30505 80 11592 1 11592 1 9887 396 8875 0 8876 8 13703 287 15303

J2EE SubSchema (release) Average 100M 128371 251 128120 3300 29729 33029 30505 2 117906 28362 45586 34823 105117 500 104873 37229 40344 27067 74305 137 75959

J2EE SubSchema (release) Average 9.6K 162546 40833 121713 4290 29729 34019 30505 2 81944 26018 106877 33415 59572 487 60616 33454 86318 28213 38547 124 40193

J2EE SubSchema
(optimized) Average 100M 66789 207 66582 3300 29729 33029 30505 416 95158 13971 115251 17895 48006 569 48062 17593 67557 15921 33720 217 35357

J2EE SubSchema
(optimized) Average 9.6K 115446 51891 63555 4290 29729 34019 30505 374 73983 13500 86182 16812 119306 473 120344 18815 27214 13354 102156 227 103782

.NET Aggregate
(pre-release) Minimal 100M 15140 1032 14108 3242 18731 21973 20003 1 9913 3500 14136 3974 14284 2 14284 3880 14030 2721 9440 29 14136

.NET Aggregate
(pre-release) Minimal 10M 14949 686 14264 3321 17549 20870 20003 1 9652 3820 9909 3882 21873 3 21873 3899 21829 2631 14103 29 9909

.NET Aggregate
(pre-release) Minimal 56K 17828 3179 14649 3758 18262 22020 20003 1 10107 3683 9913 4188 14759 3 14759 4221 20138 2524 13694 29 9913

.NET Aggregate
(pre-release) Minimal 9.6K 26418 12062 14356 3945 19141 23086 20003 1 9909 3692 10107 3842 21908 2 21908 4257 27406 2533 13667 29 10107

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 10

RAP Sheet data (cont’d)

BASIC (PARTIAL) QUERY GENERAL TRANSACTION STATISTICS

REQUEST
GENERATION

(FS)
REQUEST

VALIDATION (FS) START-UP/GC (BS) REQUEST
VALIDATION (BS)

RESPONSE GEN
(BS) VALIDATION (BS) VALIDATION (FS)

Platform Schema Data
Size Network

Total
Time,

ms

Total
Communication,

ms

Total
Overhead,

ms

Total
Processing,

ms

TCP
Conversation

Total
traffic

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

Time,
ms

RAM,
KB

.NET Aggregate (pre-release) Average 9.6K 36934 23134 13800 4049 31152 35201 31902 1 22521 3135 23416 4356 21259 4 21259 4015 14989 2250 25789 40 23416

.NET Aggregate (pre-release) Large 100M 15182 712 14470 3951 42512 46463 44207 1 22602 3367 22335 4243 20459 5 20459 4281 25764 2524 23020 50 22335

.NET Aggregate (pre-release) Large 10M 14701 366 14335 4002 42759 46761 44207 1 22813 3328 22602 4224 15152 5 15958 4224 15152 2502 23089 50 22602

.NET Aggregate (pre-release) Large 56K 19617 5987 13631 4936 42319 47255 44207 1 23020 3285 22813 3910 13993 5 14210 3910 13993 2469 23428 50 22813

.NET Aggregate (pre-release) Large 9.6K 48198 33266 14932 5103 42365 47468 44207 1 23416 3755 23020 4341 14486 15 14703 4341 14486 2419 23872 59 23020

.NET Aggregate (release) Average 100M 830500 1786 828714 4 9647 176233 38249 234564 37004 4 37004 234899 37728 182967 68105 43 68105

FULL QUERY

.NET Full (pre-release) Average 100M 22538 667 21871 3712 29014 32726 31925 1 28451 4830 26548 6057 16156 4 16156 6085 23986 4855 23874 40 26548

.NET Full (pre-release) Average 10M 22484 1492 20992 3789 29470 33259 31925 1 14809 4660 25642 5890 26240 4 26240 5985 25852 4411 25409 41 25642

.NET Full (pre-release) Average 56K 25947 4440 21508 4001 29932 33933 31925 1 25130 4668 25799 5824 15502 4 15502 6216 15303 4628 25555 167 14809

.NET Full (pre-release) Average 9.6K 68321 45872 22449 4030 31199 35229 31925 1 26535 5036 25130 6508 15617 19 15617 6120 23500 4724 23425 41 25130

.NET Full (pre-release) Large 100M 23427 1135 22293 3970 42499 46469 44228 1 26548 4904 25186 6648 15617 27 15617 5992 23553 4666 23425 55 25186

.NET Full (pre-release) Large 10M 22052 694 21358 3976 42716 46692 44228 1 25131 4728 26377 5900 25579 5 25579 5997 17443 4677 28659 50 26377

.NET Full (pre-release) Large 56K 27584 6020 21563 4931 42340 47271 44228 1 26377 4770 22828 6147 24919 5 24919 5869 16330 4721 24530 51 22828

.NET Full (pre-release) Large 9.6K 55156 33389 21768 5091 42376 47467 44228 1 22828 5008 22638 6153 24051 5 24051 5802 15875 4749 25839 51 22638

.NET Full (release) Average 100M 473258 573 472685 3970 42499 46469 44228 2 26457 102466 43913 134347 26117 13 26117 134821 25898 100964 46836 72 46836

.NET /
Sarvega Full (release) Average 100M 289 184 105 3970 42499 46469 44228 1 5082 1 8452 0 8452 4 8452 0 8452 0 5082 99 3550

.NET /
Sarvega Full (release) Average 9.6K 25980 25935 45 5091 42376 47467 44228 1 10472 1 8491 0 8491 4 8491 0 8491 0 12082 39 12082

.NET Sub-schema (release) Average 100M 833722 536 833186 3970 42499 46469 44228 1 46836 177191 41253 235413 38905 16 38905 235376 37286 185132 69336 57 69336

.NET Sub-schema
(optimized) Average 100M 344042 199 343843 3970 42499 46469 44228 1 27362 58491 27362 77044 26270 1 22715 118333 22911 89933 22911 40 22911

IJIS Institute
 GJXDM Performance Project Final Report, June 2005

http://www.ijis.org/ 11

Baseline data

TEST CASE SPECIFICS GENERAL TRANSACTION STATISTICS REQUEST

GENERATION (FS)
REQUEST

VALIDATION (FS)
START-UP/GC (BS) REQUEST

VALIDATION (BS)
DOM-PARSING
REQUEST (BS)

DOM-PARSING OF
STORAGE (BS)

DOM
MANIPULATION

(BS)
Platform Schema Data

Size
Network Total

Time, ms
Total

Comm-
unication,

ms

Total
Overhead,

ms

Total
Processing,

ms

TCP
Conversation

Total
traffic

RAM,
KB

Time,
ms

RAM, KB Time,
ms

RAM,
MB

Time,
ms

RAM,
MB

Time,
ms

RAM, MB Time,
ms

RAM,
MB

Time,
ms

RAM, MB Time,
ms

RAM,
MB

J2EE Non-JXDD V.
Small 100M 186 34 152 1935 1660 3595 2391 1 13221 21 13354 34 10109 1 10157 21 10292 31 13718 43 14333

J2EE Importing
Pre-release

V.
Small 100M 271 53 218 2057 1781 3838 2502 1 11336 54 11535 39 13345 1 13397 46 13603 41 11991 36 12606

J2EE Importing/using
Pre-release Small 100M 24359 42 24317 3 58484 4988 71854 8017 24476 3 24767 6328 31160 4946 78620 32 79280

J2EE Importing Full
Release

V.
Small 100M 29335 51 29284 2120 1853 3973 2646 1 40390 12808 54542 31 15198 1 15253 64 7303 16334 73388 45 74004

J2EE Importing/using
Full Release Small 100M 82714 81 82633 5 78927 19420 97218 21168 49208 5 49714 21022 68428 20159 121759 854 117092

.NET Non-JXDD V.
Small 100M 137 107 30 1594 1394 2988 2528 1 5686 5 5686 7 5464 1 5464 6 5464 5 5686 5 5686

.NET Importing Pre-
release

V.
Small 100M 21642 112 21530 1574 1495 3069 2739 1 6743 5098 16466 5670 16289 1 16289 5649 14764 5105 16513 6 16513

.NET Importing/using
Pre-release Small 100M 22577 123 22454 5 46291 4810 54306 5940 14746 1 14746 5839 22618 5846 29218 13 29218

.NET Importing Full
Release

V.
Small 100M 514815 93 514722 1575 1499 3074 2744 1 16222 123193 27664 134535 26760 1 26760 133805 25666 123181 27789 6 27789

.NET Importing/using
Full Release Small 100M 478769 893 477876 2744 1 29218 102593 28489 136520 25980 1 25980 136376 27412 102378 46483 7 46483

J2EE Importing Full
Release

V.
Small 100M 29335 51 29284 2120 1853 3973 2646 1 40390 12808 54542 31 15198 1 15253 64 7303 16334 73388 45 74004

APPENDIX B – Test Results Primer

GJXDM Performance Testing
Primer

June 28, 2004

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Introduction
This document describes the testing setup and the procedure followed to obtain
the GJXDM performance testing results. This document then presents a primer
for interpreting the GJXDM performance testing results. It accompanies the raw
data in Excel spreadsheets developed by the George Washington University
(GWU) testing team.

http://www.ijis.org/

1

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Test setup and procedure

Test environment

Hardware details
The test environment consists of four pieces of equipment: a back-end server, a
front-end server, a router, and a client laptop computer. The following diagram
depicts the network and equipment used for the GJXDM performance testing:

A B C D E F G H
SELECTED

ON-LINE

Figure 23 – Hardware setup diagram

Back-end server
 450MHz Pentium II CPU
 256MB RAM
 Configured as a “double-booted” computer, allows choosing between
Windows 2000 Advanced Server or RedHat 9.0 Linux operating system.

Front-end server
 366MHz Pentium II CPU
 256MB RAM

http://www.ijis.org/

2

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

 Configured as a “double-booted” computer, allows choosing between
Windows 2000 Advanced Server or RedHat 9.0 Linux operating system.

Network Simulator (router)
 233MHz Pentium II CPU
 128MB RAM
 4 PCI network cards
 OpenBSD 3.5 operating system

Client Laptop Computer
 1.2GHz Pentium III Mobile CPU (Dell Latitude C600)
 256MB RAM
 Windows 2000 Advanced Server operating system

Network Switch
A simple network switch connected the test hardware to the Internet. This
switch provided connection to the Internet (e.g., if an external schema was
needed), while isolating the test environment from outside traffic that would
affect the predictability of network performance. The model used was a Netgear
FS608 8 Port 10/100 switch.

Software details

Test applications architecture
The front-end server contained a Web application, which allowed the tester to
change settings and initiate test case runs. The front-end server communicated
with the back-end server to complete the transaction. The results of the test runs
displayed in the browser on the client laptop that the tester used to access the
Web interface.

The sample applications used the platforms, tools, and APIs typically used for
implementing the XML data exchanges on each platform selected for testing.
The Web Services data exchange model used on both platforms appeared as the
most likely approach taken by future implementers of the GJXDM. Recent
publications about GJXDM (i.e. XSTF report) also recommended the Web
Services approach. The sample applications minimized the steps not directly
related to the performance of the schema and only included functionality
relevant to performance testing; the business logic followed the outline in the test
cases.

.NET platform (both front- and back-end server)
The C# test applications developed using Microsoft .NET Framework version 1.1
and deployed on a Windows 2000 Advanced Server. The front-end server and
back-end server applications ran on a Microsoft IIS Web Server. The Web

http://www.ijis.org/

3

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

interface on the front-end server was developed using ASP.NET, and both
servers use .NET Web Services API classes to communicate.

J2EE platform (both front- and back-end server)
The Java test applications developed using Sun Microsystems Java SDK 1.4.2 on
Red Hat Linux 9.0. The Java Web Services Developer Pack (JWSDP) and Java
API for XML Processing (JAXP) implemented the data exchange. JWSDP’s
distribution of Tomcat 5.0 Web server is the servlet container for the Java test
applications.

Network Simulator / Router software
OpenBSD 3.5 distribution included a packet filter (PF), which allowed setting
bandwidth limits on network connections. This filter modified the network
speed between the servers in the tests aimed to determine the time it takes to
transfer GJXDM instances over the network. While using packet filter queuing
does not accurately represent all the real network features, it provides a
reflection of the probable transfer speeds future implementers of GJXDM should
expect.

XML Appliance
Processing text-based XML is CPU-intensive, typically consuming 45% to 80%
server cycles for compute-intensive operations such as XSLT, Schema Validation,
and XML Security algorithms. This makes scaling XML-based Web services
expensive and creates business-impacting latencies. Sarvega’s XML Appliance
utilizes a highly optimized binary data stream that solves these XML processing
problems. The XML Appliance used was a Sarvega XPE 2000 XML Appliance.

Client machine software
Since the primary aim of this testing was to determine the performance of data
exchange transactions using GJXDM, the specifics of the client machine that
drove the tests are not important and were not captured. The tests ran using
Internet Explorer 6 on the client machine.

Test transaction overview
The two servers exchange data using the Web Services Simple Object Access
Protocol (SOAP). The front-end server receives a HTTP POST request from the
client machine. The client request contains parameters that instruct the front-end
server to invoke a Web Service on the back-end server using a SOAP request
message. The SOAP message sent to back-end server contains several string
parameters that specify the characteristics of expected response (i.e., whether the
response checks against the full schema and whether it will be of minimal,
average, or large size). In most cases, the request also contains XML data that
works on the back-end server. The back-end server returns the result in a similar

http://www.ijis.org/

4

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

SOAP message, except it may also contain error messages. Then the front-end
server makes a separate Web service request to obtain the metrics collected on
the back-end server during the last transaction.

Changing parameters
 Schema type: selects from the options available in the Web interface
 Response data size: selects from the options available in the Web interface
 Test case scenario: selects from the options available in the Web interface (this
only applies to test cases that include sub-cases, such as Inmate Record.)

 Network settings: in the root home directory on the router, run one of the
scripts (e.g., pf.conf.56K to change the OpenBSD packet filter (pf) settings and
limit the bandwidth to/from the servers to the specified amount.

Collecting metrics
Most of the results were collected within the test applications using the
appropriate APIs and display on the Web interface when the test is completed.
The Web interface displays the metrics for both servers in character-delimited
format, ready to import into a spreadsheet application such as Microsoft Excel.
Other methods of collecting information include using the output of performance
monitoring tools available on the platform (e.g., Windows Performance Monitor or
top on Linux) and running a network analyzer (such as Ethereal, tethereal, or
tcpdump) on one of the servers or on the router.

Test procedure
In all test cases, server1.jxddtest.net works as the back-end server, and
server2.jxddtest.net works as the front-end server.

1. From the client laptop, open the Web interface page on the front-end
server. When testing .NET applications, the address is
http://server2.jxddtest.net/FrontServer/UIMain.aspx. When testing J2EE
applications, the Web interface is located at
http://server2.jxddtest.net/jxddtest_frontend/.

2. Select the test parameters (schema type, response size) on the Web
interface.

3. Change/verify the network settings on the router (e.g., cat /etc/pf.conf)

4. When testing on Windows, switch KVM to server1 and start the Ethereal
network analyzer capture on server1. On Linux, start the tethereal as root
in the shell (-w <log_file>). This step performs once for every unique
transaction and is separate because the network sniffers tend to drop
packets when CPU use is high. In addition, they add CPU load.

5. Submit the request on the Web interface from client machine.

http://www.ijis.org/

5

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

6. Observe the output of Performance Monitor or top on Linux. This is
optional and provides a general idea of what is happening. These tools
add an extra load, so re-run the request without them when recording
metrics.

7. Wait until the result displays in the client machine Web browser. Verify
that there were no processing errors on either server (reported in the Web
interface and in the log files of IIS and Tomcat). If the test case sequence
includes an XSLT transformation, verify that the HTML output is correct.

8. If an Ethereal/tethereal capture starts, stop it, and save the capture file.
Naming convention: {schema type}_{data size}_{network speed}.cap (e.g.,
ref_lrg_100.cap for a transaction that uses ‘Full’ schema , large data size,
and network speed of 100Mbps). For each test case/platform
combination, create a separate directory to store the captured files.

9. Copy the character-delimited transaction record shown in the Web
interface and append it to a temporary text file or import into Excel
directly.

10. If there is an Ethereal capture available, right-click on the server2->server1
POST request displayed in the Ethereal workspace. If this is the first time
this transaction is run, open ‘Follow TCP stream’ menu option, record the
‘TCP conversation’ number in the spreadsheet, and save the TCP stream
as {schema type}_{data size}_{network speed}.txt. The stream capture files
can be used later to examine the SOAP protocol overhead, etc.

11. Statistics>Conversations menu displays the number of bytes transmitted in
each direction, which should be copied to ‘FS-BS traffic’ and ‘BS-FS traffic
fields of the transaction row.

http://www.ijis.org/

6

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Results spreadsheet

Format overview
The layout of the results developed by the GWU team differs from the one
suggested in original test plan. The original design did not break the transaction
into multiple steps and record the metrics for these steps separately. For
example, it proposed reporting one “CPU time” metric for a transaction.
However, since the transaction is between two servers, reporting the sum of all
times spent in key steps of the transaction would hide important information
such as the distribution of processing time between the steps.

Furthermore, the original layout proposed putting all collected metrics in one
table. While this approach has its benefits (especially for spreadsheet
manipulation), it has some significant drawbacks: some of the metrics may not be
applicable for all cases, resulting in a sparsely populated result matrix, which is
harder to browse and interpret.

The updated data layout tries to resolve these and other issues and present the
data in a clear way closely matched to the organization of the test cases and
sample applications. A Microsoft Excel file presents the test results using
multiple tabs.

The first four tabs names are Inmate Record, AMBER Alert, Incident Report, Field
Report and RAP Sheet test cases. The AMBER Alert test case tab also includes the
data for the Reduced Tag Names (RTN) test case. The RTN case bases itself on
AMBER Alert and its data, and combining them emphasized their comparison.

The Inmate Record, AMBER Alert, and RAP Sheet test cases include test cases to
support the XML Appliance platform option.

The Baseline tab contains information about several small transactions aimed as
determining the base overhead from using the XML tools and the network and
are considered special test cases.

The Notes tab contains useful information collected during the test case
development, and ideas for future investigations. It may also contain extended
descriptions of solutions to problems encountered.

The Issues tab tracks significant problems encountered by the test team while
developing or running the test applications. The status field is color coded to
assist in readability. The description and solution fields have extended
information about the problem and its solution tracking by appending UPDATE
(xx/yy/zz) sections.

http://www.ijis.org/

7

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Test case results layout
Each row represents one transaction. The grouped rows represent a transaction,
each group containing the test runs of one transaction at different network
speeds. In Inmate Record and AMBER Alert cases, the rows are also grouped by
the sub-case (please refer to their respective descriptions for more information).

Transaction parameters: the Y axis
The first four values in a row are transaction parameters. Their combination
describes the test transaction. In Excel, the frozen parameters (Platform, Schema,
Data Size, and Network) are static to differentiate from the collected data.

 Platform: shows whether the test application ran in the .NET environment
(Windows) or on the J2EE platform (Linux). The Platform value also
indicates if the XML Appliance platform option was evaluated. XML
Appliance platform option simply added the XML Appliance to either the
.NET or the J2EE platform.

 Schema:
 All schemas are marked either as ‘release’ or ‘pre-release’, which indicates

whether the schema refers to (or is based on) the full production release version
3.0 of GJXDM or a Pre-release version (3.0.0.0).

 ‘Aggregate’ schema is a self-contained schema that is an application-specific
subset of the GJXDM. In the original test plan, this schema referred to ‘Partial
Schema’.

 ‘Full’ schema imports the full GJXDM to support object inheritance.
 A ‘Subschema’ is a subset of a schema used by programs at runtime. It consists

of all the data elements, records, sets, and areas defined in the schema or a subset
thereof. It includes database records and can include logical records as well as
logical-record paths. For this testing, ‘Subschema’ is a hybrid approach that
defines a collection of imports from the GJXDM and allows the XML parser, if
supported, to choose which ones to use. The construct of this sub-schema is
hybrid in the sense that it contains the ability for the XML instances to use both
‘Aggregate’- and ‘Full’-style constructs and is a better representation of the field.
For the purposes of the GJXDM performance testing, it serves as a baseline
comparison of the sub-schema to full schema performance. This variation tested
thoroughly in the Incident Report test case and ran as a limited additional test
with the rest of the test cases.

 Some of the test cases may provide additional schemas. Information about these
special schemas is included in the test case descriptions.

 NOTE: the original test plan also specifies a ‘Bare Bones Schema’ as a schema
type. The ‘bare-bones schema’ concept is not directly applicable to all test cases
in the same sense as 'Aggregate' or ‘Full' schema types and discussed only within
the relevant test cases.

 Data Size: specifies the size of the GJXDM instance(s) used in the test run.
 Network: specifies the available bandwidth set on the router’s packet filter.

For most transactions, there are four network speeds used during the test run

http://www.ijis.org/

8

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

– 100Mbps, 10Mbps, 56Kbps, and 9.6Kbps. If a transaction took extended
time to complete and/or the probable transaction time was available based
on existing data, the team saved time by omitting some of the network speed
variations.

Collected metrics: the X axis
The transaction parameters immediately follow a number of fields collectively
called ‘General transaction statistics’. These include:

 Total transaction time: time elapsed from the moment the user request is
registered on the front-end server till the XML data retrieved from the back-
end server is transformed (if applicable) and transaction results are ready to
be written out to the user’s browser.

 Total communication (commo): time spent by activities such as packaging
the XML data into SOAP format, establishing connection to the remote server,
and sending/receiving data. Defined for the entire transaction and
represents the total transaction time minus processing and overhead.
Although this is a somewhat rough metric, it is a better representation of
communication than the calculated or measured pure transmission time.
While pure transmission time calculates knowing the network characteristics,
this metric cannot because it includes the platform-dependent overhead.

 Total overhead: time spent preparing the test run (total for both the front-end
and back-end server). Because of the difference in the testing platforms, the
programmer may need to implement some testing-specific steps that would
not be present in the live application and excluded from the final transaction
time calculations. One example of this is the need to call the garbage collector
in the beginning of a J2EE application to receive consistent RAM usage
metrics. A live application would not be doing this and the testing protocol
needs to separate this step from others.

 Total processing: the sum of all times spent in the instance generation,
parsing, validation, and transformation steps (the composition may vary for
different test cases).

 FS-BS traffic (front-end to back-end): total number of bytes sent from the front-
end server to the back-end server during the TCP connection established for
the exchange. This information is retrieved from examining the network
“conversation” recorded using a standard packet sniffer and represents bytes
sent/received on both sides, including the lower-level protocol information
(IP headers, etc.). Note that this metric will be different for different network
speeds because of different packet breakdown.

 BS-FS traffic: same as FS-BS traffic except the direction of transmission
 Total traffic: is the sum of the two previous metrics (BS-FS and FS-BS traffic).
 TCP conversation: the number of bytes exchanged in the TCP payload; it is

always the same for a given transaction because it does not include re-sent
packets and packet header information.

http://www.ijis.org/

9

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

The remainder of the transaction row consists of multiple ‘Time/RAM’ pairs
recorded at different steps of the transaction. The steps display on the top of the
sheet in the headings with alternating colors and follow the transaction sequence.
The label for each step is followed by ‘(FS)’ or ‘(BS)’, specifying that the operation
was performed on the front- or back-server, respectively.

 Time: the ‘elapsed time’ recorded for the action, expressed in milliseconds.
The time recording native to the platform API is the basis on this metric.

 RAM: the amount of RAM used by the CLR on .NET, or by JVM on J2EE,
expressed in kilobytes. Since the testing suite is the only application running
on the platform, the variations of this metric show the amount of memory a
particular step requests from the host machine.

The steps may include the following:

 Setup/GC: the overhead caused by application activities necessary for testing,
but not necessary for normal operation. This metric is higher on the J2EE
platform because the test application needs to call garbage collection, which
always takes several hundred milliseconds.

 Response/request generation: retrieves a string of XML data (instance) for
further manipulation. The test plan specifies that the transaction start with an
existing instance provided in the test case, and this is the time for reading the
XML from a file. In most cases, this metric is low, because of the buffering
done by the platforms – the read() call returns the String object reference
before reading it all into memory and proceeds to read the data into memory
in the background.

 Response/request validation: provides a complete validation the XML data.
Only successful validation times are included in the result data because in the
negative validation case, the validation subroutine may exit at any point.
This step includes both parsing the schema (possibly with imported schemas)
and document parsing.

 DOM parsing: includes reading and parsing the XML string, creating the in-
memory DOM representation.

 DOM manipulation: adds/modifies a number of nodes in the DOM tree.
 Transformation: applies an XSLT stylesheet to the XML data.
 Serialization and writing to file: in case the transaction includes an update to
the in-memory DOM tree, this step converts the DOM tree into a string of
XML data and writes it onto the hard drive.

http://www.ijis.org/

10

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Individual test case information
This section describes in detail the implementation of the test cases. Whenever
possible, mentioning the data/schema/stylesheet files used and position them in
the test data package also made available online.

Baseline
This special test case captures the overhead of starting the environment itself and
using the XML APIs. All sub-cases represent a simple “RAP Sheet”-like
transaction, which sends a request XML data stream to the back server and
receives XML data stream in return. The request and response validates when it
sends or receives, for all four validations, and the response transforms on the
front-end server. For simplicity, the testing used the same XML file for request
and response. Five baseline results reported for each of the two platforms:

 Non-JXDD: This test represents the smallest possible transaction. It is based
on an extremely small non-JXDD schema (i.e., two elements in own
namespace) and uses a minimal XML transformed by a minimal XSLT
stylesheet.

 Importing Full Release: The schema imports the full 3.0 release of GJXDM,
but does not actually use elements from the imported namespace.

 Importing Pre-release: The schema imports the Pre-release version of the
GJXDM, but does not actually use elements from the imported namespace.

 Importing/using Full Release: The schema imports the full 3.0 version of the
GJXDM, and the XML data file uses elements from the imported namespace.
This sub-case tries to determine whether the XML processing metrics change
based on the actual usage of the elements.

 Importing/using Pre-release: The schema imports the Pre-release version of
the GJXDM, and the XML data file uses elements from the imported
namespace.

Inmate Record test case
The test divided into a number of sub-cases, or scenarios: Alias Add, Alias
Address Add, Address Update Scenario, Detention Add, Detention Update,
Person Update, Basic Query, and Full Query. Similar scenarios existed and
omitting the redundant scenarios left Alias Add, Address Update, Basic Query,
and Full Query. The first two modify an XML record on the back-end server,
and the other two request data from the back-end server.

All original test runs used the Pre-release version of the GJXDM schema and
conform to either ‘Aggregate’ or ‘Full’ schema. Three additional tests ran using
the full 3.0 release schema: ‘Aggregate’, ‘Full’, and ‘SubSchema’. All three used
average data size and 100 Mbps network speed to determine the time difference
on the validation step, dominated by schema parse time previously.

http://www.ijis.org/

11

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Inmate Record test case scenarios that modify an XML record
Alias Add and Address Update scenarios involve sending a short Inmate Record
request to the back-end server, which uses the information from the request and
makes changes to the XML file designated as the ‘storage’. The XML data used
as storage is one of the full Inmate Record files taken from the Full Query
scenario. The ‘storage’ file (of the requested size and conforming to the
requested schema) reads into memory, modified based on the request, and
written back to the file system as a temporary file.

Alias Add:
On the front-end server:

1. Create an Inmate Alias instance from file to be used as a request (an
Inmate node with one Subject, always the same size, but conforming to
one of the two schemas)

2. Validate the request instance XML

3. Send the request XML to the back-end server in a SOAP request envelope
(the request envelope contains information about the schema and size of
the storage file to be used)

On the back-end server:

4. Validate the request XML

5. Create the in-memory DOM structure from the request XML

6. Read in the storage XML file

7. Create the in-memory DOM structure from the storage XML

8. Extract the ClientID value from the request using an XPath expression

9. Extract from the storage the Inmate node with matching ClientID

10. Extract from the request the Subject node

11. Add the Subject node from request to the Inmate node from storage

12. Extract the IDs from the first Subject in the Inmate storage and the Subject
in the request XML using XPath.

13. Add a SameAsRelationship node with object and subject attributes set to
these IDs.

14. Serialize the storage XML and write it to the file system as a new file.

Address Update:
On the front-end server:

http://www.ijis.org/

12

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

1. Create an Inmate Alias instance from file to be used as a request (an
Inmate node with one Subject, always the same size, but conforming to
one of the two schemas, depending on user input)

2. Validate the request instance XML

3. Send the request XML to the back-end server in a SOAP request envelope
(the request envelope contains information about the schema and size of
the storage file to be used)

On the back-end server:

4. Validate the request instance XML

5. Create the in-memory DOM structure from the request XML

6. Read in the storage XML file (Inmate Record of the requested size and
conforming to the requested schema).

7. Create the in-memory DOM structure from the storage XML

8. Extract the ClientID value from the request using an XPath expression

9. Extract from the storage the Residence node belonging to the first Subject
within the Inmate record with matching ClientID using XPath

10. Extract the Residence node from the request using XPath

11. Traverse the two node trees starting at the Residence node, comparing the
element values and if they differ, setting the values in storage Residence
equal to the ones in the request Residence. Before this is completed, the
application ensures that the two node trees are structurally the same and
normalizes the XML data. The procedure results in 15 updates to the
Residence node tree.

12. Serialize the storage XML and write it to the file system as a new file.

Inmate Record test scenarios that retrieve an XML record
Full Query and Basic Query scenarios involve sending a short Request record (a
minimal Inmate Record) to the back-end server, which responds with a Full or
Basic Inmate Record XML data of varying sizes and conforming to either
‘Aggregate’ or ‘Full’ schema. The response processes on the front-end server
using the matching XSLT stylesheet and then sent to the user. Full Query
responses of different sizes contain a varying number of Detention records. Basic
Query responses are always one size (Average).

Full Query / Basic Query:
On the front-end server:

http://www.ijis.org/

13

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

1. Create a Request instance from file (Inmate element with one Subject,
always the same size, but conforming to one of the two schemas,
depending on user input)

2. Validate the request instance XML

3. Send the request to the back-end server in a SOAP envelope

On the back-end server

4. Validate the request XML

5. Create a full response Inmate Record from file (this is an Inmate Record
with multiple Subject elements (aliases) and Detention elements)

6. Validate the response XML

7. Send the response back to the front-end server

On the front-end server:

8. Validate the response XML

9. Transform the XML data using the matching XSLT stylesheet

10. Write the transformed HTML content to user’s browser

Field Report test case
This test case was included in order to evaluate the performance characteristics
of an extremely short transaction. The Field Report entry transaction was
selected due to the minimum number of fields and relatively small size of the
transaction.

RAP Sheet test case
This test case involves requesting the RAP Sheet information from the back
server and displaying it on the user’s screen. The SOAP envelope sent by the
front-end server includes a special small ‘Request’ XML string which contains
information such as <jdd:PersonFBIID />.

All original tests ran with the Pre-release version of the GJXDM schema and
conform to either ‘Aggregate’ or ‘Full’ schema. Three additional tests ran using
full 3.0 release schema: ‘Aggregate’, ‘Full’, and ‘SubSchema’. All three use
average data size and 100 Mbps network speed to determine the time differences
on the validation step, dominated by schema parse time previously.

On the front-end server:

1. Create a Request instance from file (i.e. a RAPSheet with one element,
Introduction.) The request is always the same size, but conforms to one of
the two schemas, depending on user input.

2. Validate the request instance XML

http://www.ijis.org/

14

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

3. Send the request to the back-end server in a SOAP envelope

On the back-end server

4. Validate the request XML

5. Create a response RAP Sheet from file (e.g. this is a RAPSheet element
with multiple Subject, Organization, and Cycle elements in it)

6. Validate the response XML

7. Send the response back to the front-end server

On the front-end server:

8. Validate the response XML

9. Transform the XML data using the matching XSLT stylesheet

10. Write the transformed HTML content to user’s browser

AMBER Alert test case
This test case implements the AMBER Alert Get transaction, during which the
front-end server requests an AMBER Alert message from the back-end. There is
no data size variation within the case, and all data are ‘Average’ sized.

All original tests ran with the 3.0 release version of the GJXDM schema and
conform to either ‘Aggregate’ or ‘Full’ schema. Two additional tests ran using
full 3.0 release-based ‘SubSchema’, and one with a ‘Full’ Pre-release version for
performance comparison.

There is also a special schema used: ‘Aggregate Flat’. This schema is not “flat” in
the full sense, but rather a special kind of schema derived from GJXDM.
“Flattening” GJXDM (i.e. eliminating the object inheritance and making all
objects “self-contained”) is impossible because GJXDM is an indeterminate
schema. Instead, the sub-schema author created a “sectioned data model”,
which uses ‘groups’ and ‘attributeGroups’ to eliminate the duplicate elements
that would emerge from flattening an indeterminate schema. Including this
schema into the tests provides data that evaluates the impacts of abstraction.

Based on the AMBER Alert test case, the Reduced Tags Name test case
determines the impact of GJXDM’s long tag names and presents its results on the
same tab as a sub-case. The instances of AMBER Alert Reduced Tags have the
same structure and processing, but have all tag names replaced with the
‘smallest possible’ substitute, generated automatically during the test case
development (see the test plan for more information on this methodology). The
Excel tab contains the detailed information about the size of the instances of
AMBER Alert and AMBER Alert – Reduced Tags.

On the front-end server:

http://www.ijis.org/

15

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

1. Create a SOAP request packet with the requested schema type and data
size; there is no XML data sent in the request

2. Send the request to the back-end server

On the back-end server:

3. Create a response AMBER Alert from file

4. Validate the response XML

5. Send the response back to the front-end server

On the front-end server:

6. Validate the response XML

7. Transform the XML data using the matching XSLT stylesheet

8. Write the transformed HTML content to user’s browser

Arrest Incident Report test case
This test case implements a “push” transaction during which the front-end
server sends a report to the back-end. The report transforms on the front-end
before sending and the back-end acknowledges the receipt of the message by
responding with a ‘no errors’ SOAP envelope containing the ID of the report that
was received.

The three data sizes are Minimal, Average, and Large and three schemas used in
this test case: ‘Aggregate’, ‘Full’, and ‘SubSchema’.

The ‘Full’ sub-case divides into ‘Local’ and ‘External’, which obtains the GJXDM
from the server file system or OJP’s Web site, respectively. This test aims to
determine the difference caused by varying the full schema location.

On the front-end server:

1. Create a Report instance from file (an IncidentReport with
IncidentSubject, IncidentVictim elements, etc.) The instance can be one of
three different sizes and conforms to one of the three schemas, depending
on user input.)

2. Validate the report instance XML

3. Transform the report using the matching XSLT stylesheet

4. Send the report to the back-end server in a SOAP envelope

On the back-end server

5. Validate the report XML

http://www.ijis.org/

16

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

6. Acknowledge receipt by getting the ID from the SOAP envelope and
sending it back in an otherwise empty SOAP envelope, meaning
‘received’.

On the front-end server:

7. Notify the user upon receiving report.

http://www.ijis.org/

17

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

References

Title URL
[XSTF report] "Structure and Design Issues
for Developing, Implementing, and
Maintaining a Justice XML Data Dictionary",
report of the Justice XML Structure Task
Force (XSTF), 13 April 2004

http://justicexml.gtri.gatech.edu/Justice
XMLStructureTaskForceReport_a.pdf

OpenBSD FAQ, PF manual http://www.openbsd.org/faq/pf

http://www.ijis.org/

18

http://justicexml.gtri.gatech.edu/JusticeXMLStructureTaskForceReport_a.pdf
http://justicexml.gtri.gatech.edu/JusticeXMLStructureTaskForceReport_a.pdf
http://www.openbsd.org/faq/pf

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

APPENDIX C – Acronym List

http://www.ijis.org/

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Acronym Name or Term

.NET
Microsoft product, a language-neutral platform for enterprise and
Web development

AMBER (alert) America's Missing: Broadcast Emergency Response
API Application Program Interface
BJA Bureau of Justice Assistance
BS Back-end Server
CADS Center for Advanced Defense Studies
CPU Central Processing Unit
CSPRI Cyber Security Policy and Research Institute
DOJ Department of Justice
DOM Document Object Model
DTD Document Type Definition
FS Front-end Server
GJXDD Global Justice XML Data Dictionary
GJXDM Global Justice XML Data Model
GTRI Georgia Tech Research Institute
GWU George Washington University
HTML Hypertext Markup Language
IIS Internet Information Server
IJIS Integrated Justice Information Systems Institute
IP Internet Protocol
J2EE Java 2 Enterprise Edition
JAXP Java API for XML Processing
JWSDP Java Web Services Developer Pack
JXDD Justice XML Data Dictionary
Kb Kilobyte
Mb Megabyte
ms Millisecond or 1/1000 second
NCIC National Crime Information Center
OJP Office of Justice Programs
OpenBSD Open source variant of the Berkeley System Distribution UNIX
RAM Random-Access Memory
RAP Record of Arrest and Prosecution (Sheet)
SAIC Science Applications International Corporation
SDK Software Developer's Kit
XDR XML-Data Reduced
XML eXtensible Markup Language

1
http://www.ijis.org/

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

Acronym Name or Term
XSD XML Schema Definition
XSL eXtensible Stylesheet Language
XSLT eXtensible Stylesheet Language Transformations

2
http://www.ijis.org/

IJIS Institute
GJXDM Performance Testing Primer, June 28, 2004

For more in-depth information about the IJIS Institute or a copy of this report,
visit www.ijis.org

1
http://www.ijis.org/

http://www.ijis.org/

	Table of Contents
	Table of Figures
	
	 Preface
	 Acknowledgements
	 Executive Summary
	Other Findings
	Best Practices
	 Methodology
	Goals and Objectives
	Testing Scope
	Test Regimen
	Technology Areas
	Back-End Server
	Transmission of Information
	Front-End Server

	Excluded Areas of Measurement

	Test Approach
	Level 1 – Platform
	Microsoft
	J2EE
	XML Appliance
	Shared Resources for All Platforms
	Client
	Network

	Level 2 – Use Case Scenarios
	Level 3 – Sample Test Transactions
	Schema Variation Testing
	Data Content (Payload) Variation Testing

	Level 4 – Measurement Phase of Transaction
	Creating GJXDM Instances
	Sending Server - Parsing and Validation of Instances
	Transmission of Instances
	Receiving Server - Parsing and Validation of Instances
	Transformation of GJXDM to Target Format

	Level 5 – Performance Metrics
	Interoperability

	Test Environment
	Hardware
	Server 1 (Back-end server)
	Server 2 (Front-end server)
	Network Simulator (router)
	Client Computers
	Network Switch – 100Mbps
	XML Appliance

	Software
	Server 1 (Back-end server)
	Server 2 (Front-end server)
	Network Simulator (Router)
	Client Computer
	XML appliance

	 Test Results
	Summary
	General Analysis
	Validation

	Platform Findings
	Summary Data
	Transaction Time
	Transaction Stages

	Detailed Analysis
	Schema Approaches
	Payload Size
	Work Location
	Platform Comparisons
	GJXDM Version Comparison

	Use Case Findings
	Use Case Content
	AMBER Alert
	Arrest/Incident Report
	Inmate Record
	RAP Sheet
	Summary Data

	Data Size (Payload) Findings
	Summary Data
	Analysis

	Schema Design Findings
	Summary Data
	Flattening the Data Model
	Subset Schema Architecture
	Analysis

	Reduced Tag Names
	Tag Name Length Findings
	Summary Data

	Network Considerations Findings
	Summary Data
	Analysis

	Where Work Happens Findings
	Summary Data
	Analysis

	 Lessons Learned (Tricks, tips and hints)
	 Proposed Next Steps
	Recommendations for Further Research

	
	Introduction
	 Test setup and procedure
	Test environment
	Hardware details
	Back-end server
	Front-end server
	Network Simulator (router)
	Client Laptop Computer
	Network Switch

	Software details
	Test applications architecture
	.NET platform (both front- and back-end server)
	J2EE platform (both front- and back-end server)
	Network Simulator / Router software
	XML Appliance

	Test transaction overview
	Changing parameters
	Collecting metrics
	Test procedure

	 Results spreadsheet
	Format overview
	Test case results layout
	Transaction parameters: the Y axis
	Collected metrics: the X axis

	Individual test case information
	Baseline
	Inmate Record test case
	Inmate Record test case scenarios that modify an XML record
	Alias Add:
	Address Update:

	Inmate Record test scenarios that retrieve an XML record
	Full Query / Basic Query:

	Field Report test case
	RAP Sheet test case
	AMBER Alert test case
	Arrest Incident Report test case

	 References

