

This project was supported by Grant No. 2009-DB-BX-K105 awarded by the Bureau of Justice,
Office of Justice Programs in collaboration with the U.S. Department of Justice’s Global Justice
Information Sharing Initiative. The opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily reflect the views of the
U.S. Department of Justice.

GRA Technical Note RESTful Web Services Version 1.0

i

Table of Contents

Acknowledgements ... 1

Executive Summary .. 2

REpresentational State Transfer (REST) Overview .. 3

Global Reference Architecture Service Interaction Profile Requirements 4

RESTful Resource Access Web (RAW) Services .. 6

Conclusion .. 9

GRA Technical Note RESTful Web Services Version 1.0

1

Acknowledgements

This Technical Note does not reflect a normative policy position from the Global
Justice Information Sharing Initiative (Global) community of stakeholders. Rather, it
is intended to inform participants and practitioners on architectural compatibility
issues known to exist between the Global Reference Architecture and
REpresentational State Transfer (REST) services.

Global would like to thank the Global Infrastructure/Standards Working Group
(GISWG), Services Implementation Committee and Mr. Bob Slaski, principal author
of this technical note, for their continued volunteer efforts as dedicated participants
in the Global initiative. Any questions or comments should be directed to the chair
of the GISWG Services Implementation Committee, Mr. Scott Came.

GRA Technical Note RESTful Web Services Version 1.0

2

Executive Summary

REpresentational State Transfer (REST) is a movement or architecture that is not
defined or specified in a manner that conforms to Global Reference Architecture
service requirements. It is conceptually simple, but part of that simplicity is achieved
by compromising foundational requirements, such as security. While REST is built
on well-defined transport services, all additional requirements, such as data
representation, reliable exchange acknowledgements, message-level security,
message exchange patterns, etc., are not standardized. Substantial effort would be
required to adequately specify the use of REST services, and the resulting
specification would not realize the benefits and leverage associated with industry
standards. As a result, the development of a Global Reference Architecture REST
Service Interaction Profile (SIP) is not planned.

Efforts are under way to clearly document the common framework of the Global
Reference Architecture Web Services SIPs and the Global Federated Identity and
Privilege Management (GFIPM). The GFIPM System-to-System Profiles are based
exclusively on the use of Web services standards. The Logical Entity eXchange
Specification (LEXS) is increasingly adopting Web service standards with LEXS
version 4.0. While not strictly required, Global Reference Architecture Web services
will likely serve as the infrastructure for the vast majority of LEXS implementations.
The use of REST is not recommended for organizations that wish to adopt Global
products, such as the Global Reference Architecture Web Services SIPs and GFIPM
System-to-System Profiles, in conjunction with LEXS 4.0 or later.

There may be circumstances in which an exchange does not need to meet many of
the Global Reference Architecture requirements. For example, there may be an
existing secure network, and the network may meet security requirements. Likewise,
the requirements of a law enforcement exchange may not require protocol-based
message reliability when the overall system has a very high reliability and there are
application-level mechanisms in place to ensure proper receipt. In these situations,
the use of REST may be adequate and appropriate.

GRA Technical Note RESTful Web Services Version 1.0

3

REpresentational State Transfer (REST) Overview

REpresentational State Transfer (REST) is a “movement” to promote the
development of services on the World Wide Web using the same architecture that is
currently used by users to interact with Web resources. REST has been
appropriately referred to as Resource Oriented Architecture. The notion of REST is
derived from the early work of Roy Fielding and his dissertation, Architectural Styles
and Design of Network-based Software Architecture.

There are no REST specifications. Rather, REST relies on the use of the World Wide
Web HyperText Transfer Protocol (HTTP) as the underlying resource access model.
Advocates of REST tend to view “big” Web services as too complex and
unnecessary. “Big” Web services refers to traditional Web services, often referred to
as “WS-*.” The paper, RESTful Web Services vs. Big Web Services: Making the
Right Architectural Decision, 17th International World Wide Web Conference
(WWW2008), Pautasso, Cesare; Zimmermann, Olaf; Leymann, Frank (April 2008),
provides guidance on the appropriate architectures for using REST.

Since there are no definitive specifications for REST, much of this Technical Note is
based on Internet research. The book RESTful Web Services, by Leonard
Richardson and Sam Ruby, was used extensively as a reference.

The REST architecture holds that the resource-oriented model of the World Wide
Web can and should be applied to most services. The definition of a resource is very
broad and essentially identifies anything that has an address, a representation, and a
means of linking to other resources. The address is the Uniform Resource Indicator
(URI), and the representation can be essentially any media type. Linking is provided
by the ability to include URIs within the resource representation.

The key principles of the Resource Oriented Architecture (ROA) are:

 Uniform interface
 Statelessness
 Addressability
 Connectedness (links)

The uniform interface for REST services consists of the basic methods supported by
the HTTP protocol: POST, GET, PUT, DELETE, plus the lesser-used methods of
HEAD and OPTION. The HTTP methods—PUT, GET, POST, DELETE—
correspond to the notions of create, read, update, and delete.

Because the definition of resource is so broad, any addressable item could be
defined as a resource and managed using the uniform interface. For example, a

http://www.jopera.org/docs/publications/2008/restws�
http://www.jopera.org/docs/publications/2008/restws�

GRA Technical Note RESTful Web Services Version 1.0

4

record within a file could be considered a resource, and that resource could be
retrieved using REST GET.

Statelessness is provided by the atomic nature of REST services. Any method
applied to a resource is viewed as a single autonomous operation. The World Wide
Web provides statelessness using autonomous methods and by providing
repeatability. Repeatability is more specifically defined in the notions of safety and
idempotence. Safety means a GET or read transaction can be repeated with the
same results. There are no side effects. Idempotence means that an operation that
performs a change can be repeated and the results will be the same. The REST
concept works well for applications such as simple file record operations. However,
it is inadequate for more complex operations such as debiting an account.

There are two major problems in attempting to use REST as a formal service
interaction profile. First, it is not standardized. There are no formal specifications,
and implementations vary. Second, REST does not address more complex
interaction requirements such as guaranteed reliability or security—a fundamental
component and requirement of the justice community of users who the Global
Reference Architecture serves.

Global Reference Architecture Service Interaction Profile Requirements

The Global Reference Architecture defines the potential requirements for service
interactions. Specific interactions may not need to support all of the potential Global
Reference Architecture requirements. While there are no formal standards for REST
services, the table below summarizes how REST services might accomplish the
requirements associated with a Global Reference Architecture SIP. For reference
purposes, the table also shows the associated WS-* specifications.

Potential Global
Reference

Architecture
Requirement

Potential REST
Approach to
Requirement

WS-* Specification

Service Consumer
Authentication

 Nonstandard
 HTTP Authorization with

extensions, e.g., X-WSSE

 WS-I Security Profile 1.1
 WS-SecureConversation
 GFIPM w/SAML 2.0
 WS-Trust

GRA Technical Note RESTful Web Services Version 1.0

5

Potential Global
Reference

Architecture
Requirement

Potential REST
Approach to
Requirement

WS-* Specification

Service Consumer
Authorization

 Nonstandard
 HTTP Authorization with

extensions, e.g., X-WSSE

 WS-I Security Profile 1.1
 WS-SecureConversation
 GFIPM w/SAML 2.0

Identity Attribute
Assertion Transmission

 Open Authorization GFIPM w/SAML 2.0

Service Authentication Nonstandard WS-I Security Profile 1.1

Non-Repudiation Nonstandard using
timestamp

 Timestamp w/XML
Signature

Reliability Nonstandard
 Stateless, idempotent

transactions

 WS-ReliableMessaging

Message Integrity Nonstandard using
digital signature

 WS-I Security Profile 1.1
 XML Signature

Message
Confidentiality

 Transport Layer Security
 HTTPS
 Nonstandard XML

Encryption
 FIPS 140-2

 WS-I Security Profile 1.1
 XML Encryption
 FIPS 140-2
 Transport Layer Security

Message Addressing Uniform Resource
Identifier (URI)

 WS-Addressing

Transaction Support Nonstandard WS-AtomicTransaction
 WS-BusinessActivity
 WS-Coordination

Service Metadata
Availability

 Nonstandard
 HTTP OPTION

 WS-MetadataExchange

Interface Description WSDL 2.0
 WADL

 WSDL 1.1, 2.0

GRA Technical Note RESTful Web Services Version 1.0

6

Potential Global
Reference

Architecture
Requirement

Potential REST
Approach to
Requirement

WS-* Specification

Message Exchange
Patterns

 Resource-oriented
 HTTP

GET,PUT,DELETE,
POST,OPTION,HEAD

 Request-Response, One-
Way

 WS-Notification

Simple Message XML or non-XML XML
 SOAP

Composite Message MIME XML Infoset

Binary Data Media Type—MIME,
linked multimedia
(mashup)

 XML-Binary Optimized
Packaging

 Message Transmission
Optimization Package

This table is not meant to be exhaustive. Rather, it is intended to highlight that many
of the requirements would need to be satisfied in a nonstandard manner. While it is
possible to define these custom approaches, the viability and cost of using, and
possibly maintaining these specifications would be prohibitive and counter to the
efficiencies and benefits the Global Reference Architecture community strives to
realize.

The absence of a formal interface specification for REST interfaces would be difficult
for implementers. Web services descriptions (WSDLs) provide a well-defined
interface for services. While the use of NIEM makes WSDLs more complex, they still
provide a standard service description which is not available with REST interfaces.

The simple, stateless nature of REST interfaces allows applications to operate with
high reliability and can mitigate the need for guaranteed reliability.

No standard security framework exists for REST. Major corporations, such as
Amazon, that use REST have implemented their own unique security specifications.
The Open Authorization (OAuth) Core specification is one specification that could be
used, but there is no clear consensus with respect to REST security.

RESTful Resource Access Web (RAW) Services

The W3C Web Services Resource Access Working Group
(http://www.w3.org/2008/11/ws-ra-charter.html) is in the process of finalizing Web

http://www.w3.org/2008/11/ws-ra-charter.html�

GRA Technical Note RESTful Web Services Version 1.0

7

Services for Resource Access, also known as Resource Access Web Services or RAW
Services. The earlier Resource Access efforts were focused on management services.
However, there is an increasing interest in RAW Services as a means to implement
RESTful services. RAW Services are essentially traditional Web services constrained
and adapted to a resource view. The specifications assume the use of the
WS-I Basic Profile and WS-Addressing. RAW Services can be developed that are
fully compliant with the Global Reference Architecture Web Services Service
Interaction Profiles.

RAW Services specifications are currently in candidate recommendation working
draft. The specifications include WS-Transfer, WS-ResourceTransfer, WS-
Enumeration, WS-Eventing, and WS-MetadataExchange. These specifications are
useful even as candidate recommendations to adapt Web service implementations to
resource orientation. The standardization efforts are being supported by major
vendors including Microsoft, IBM, and Oracle (Sun).

A high-level description of each RAW Service standard is provided below.

Standard Description

WS-Transfer Create, Read, Update, Delete (CRUD) access to
Resources

WS-ResourceTransfer Field-level (subresource) access using Xpath

WS-Enumeration “Result set” access using a cursor

WS-Eventing Subscriptions/notices with both push and pull options

WS-MetadataExchange Service metadata

How do RAW Services work? RAW Services use SOAP Request-response message
exchange patterns to implement basic “CRUD” operations; Create, Read (Get),
Update (Put), Delete. Resources are defined via WS-Addressing Endpoint
References (EPR). Because SOAP1

1 SOAP is the underlying XML format for defining a message header and body.

 is specified using XML, resource address and
resource value data is consistently delivered (in XML). A typical example of RAW
Services might be the reading or updating of file records or table rows specified as
resources. The table below contrasts REST and RAW concepts.

GRA Technical Note RESTful Web Services Version 1.0

8

RAW Concept REST Concept

Resource Resource

WS-Transfer operation HTTP Action

WS-Addressing
Endpoint Reference

URI

XML w/binary using XOP/MTOM Media type

Stateless or “stateful” as negotiated Stateless (client-based state)

A RAW Get identifies the resource in the SOAP header. The GetResponse provides
the resource content in the SOAP body. A RAW Put identifies the resource in the
SOAP header and the SOAP body has resource values to be updated. The
PutResponse provides acknowledgement. An example is shown below with a RAW
Service getting vehicle data and a corresponding REST service. The RAW Service
standards include WS-Eventing, which defines rich push or pull subscription services
with delegation. The broad corporate representation on the Web Services Resource
Access Working Group would appear to indicate that the long-standing split between
WS-Eventing and WS-Notification will be resolved in favor of the new WS-Eventing
standard. The WS-Enumeration specification provides for client-based “cursor”
control of a “result set” access, e.g., next 10. This has broad applicability in searches
which result in multiple “hits” that must then be paged for subsequent refined
searches.

RAW Service REST HTTP

HTTP POST
<S11:Header>
 <wsa:To>/NCIC/transfer/Get
 <\wsa:To>
 <VIN>ABCDEF0123456789<\VIN>
<\S11:Header>
<S11:Body\>

HTTP GET /NCIC/QV/VIN/
ABCDEF0123456789

HTTP 200 OK
<S11:Header>
 <wsa:To>/NCIC/transfer/GetResponse
 <\wsa:To>
 <VIN>ABCDEF0123456789<\VIN>
<\S11:Header>
<S11:Body>
 <VehicleTag>Vehicle data<\VehicleTag>
<\S11:Body>

HTTP 200 OK
<Message>
 <VIN>ABCDEF0123456789<\VIN>
 <VehicleTag>Vehicle data<\VehicleTag>
<\ Message >

GRA Technical Note RESTful Web Services Version 1.0

9

RAW Services are specified for the widely supported WS-I Basic Profile 1.1 and
composable with other WS-* specs. In particular, RAW Services are fully
composable with WS-Security and with WS-ReliableMessaging. Stateless operation
and application-level acknowledgement may provide adequate reliability for many
applications. RAW Services cannot fully leverage WSDL because resource identifiers
(parameter equivalents) are specified in the SOAP header. Also, like REST services,
RAW Services are not suitable for more complex or long-running transactions.

Conclusion

REST is an architectural style, not a specification. It is a popular commercial
alternative to SOAP-based Web services. It is based on HTTP and the concept of
uniform methods to access information as resources. REST can be used in
conjunction with a number of best practices to meet Global Reference Architecture
requirements, but these solutions are not standardized and represent an ad hoc
approach. As a result, it is not possible to adopt REST without very substantial work
to develop interoperable specifications. Development of a REST Service Interaction
Profile would require considerable effort and would likely have limited adoption. We
are not aware of any major justice information sharing initiative based on REST with
the exception of the FBI CJIS Division, which is planning to use REST for internal
exchanges.

There are no consistent REST specifications that allow REST implementations to
meet the service interaction requirements of the Global Reference Architecture.
Further, the Global Federated Identity and Privilege Management (GFIPM) System-
to-System Profile is based entirely on the use of SOAP and Web services standards.
Efforts are under way to clearly document the common framework of the Global
Reference Architecture and GFIPM. Further, the Logical Entity eXchange
Specification (LEXS) is increasingly adopting SOAP-based Web service standards
with LEXS version 4.0. LEXS 4.0 adopts WS-Addressing, WS-Notification and other
SOAP-based Web services standards. While not strictly required, SOAP-based Web
services will likely serve as the infrastructure for the vast majority of LEXS
implementations.

Two common rationales are often given for the use of REST. The theoretical
rationale is that the resource view provides greater benefits than a service view.
While there is a reasonable basis for this argument, there would need to be
considerable effort to model current exchanges as access to resources, and much of
the current effort defining and developing standard services would be lost. In
addition, it would seem more difficult to adopt a resource view where the resource
(e.g., person) is not readily identified, as is often the case in an investigation.

The second rationale, which is often put forward by technical staff, is that REST is
easier. REST appears easier because it is not constrained by interoperability

GRA Technical Note RESTful Web Services Version 1.0

10

specifications and does not address more difficult issues such as security. However,
because of this lack of specification, REST solutions are typically proprietary,
noninteroperable, and inconsistently secured. Major commercial organizations, such
as Amazon, are large enough to dictate proprietary REST interfaces and may even
derive some business benefit from having a proprietary interface. Some government
systems, such as Federal Bureau of Investigation (FBI) CJIS systems, may have the
clout and reach to justify nonstandard interfaces, but state and local agencies will
need to rely on well-defined standards-based solutions to achieve interoperability.

Many organizations are implementing security solutions that provide security and
privacy enforcement using standard commercial gateway products such as the IBM
DataPower appliance. Such products can process security and privacy elements
automatically when Web service standards are used. Since REST implementations
do not follow a standard security approach, gateways may not support the specific
security approach used for the REST implementation. This is a significant limitation
of REST use in the criminal justice community.

Most criminal justice and public safety organizations will adhere to the Global
Reference Architecture and use Global Reference Architecture Web Services Service
Interaction Profiles (SIPs) in conjunction with GFIPM federated identity and Web
services LEXS federated queries. Since these organizations will already need to
support SOAP-based Web services in accordance with the Global Reference
Architecture SIP, any REST offering will be an addition to the SOAP-based Web
services, not a replacement. Most organizations will also need to support a legacy
interface and will not have the resources to support two different new interfaces—
SOAP-based Web service and REST. The legacy interface will likely suffice for those
consumers who want a simpler but less secure interface such as REST offers. This
same approach is likely to prevail when considering REST for internal transactions.
Most likely, internal transactions will remain in legacy formats until applications can
be transitioned to new services. Since new services will need to support Global
Reference Architecture Web services, there will likely be resistance to implementing a
second interface using REST.

Where desired, it is also possible to build “RESTful” applications using Global
Reference Architecture-compliant Web services. The core of REST is stateless
services, which are defined as access to resources using a simple uniform interface
(e.g., Get). Existing Web services specifications, referred to as Resource Access Web
(RAW) Services, provide secure, reliable transacted services using proven Web
services standards within the broad framework of a resource-oriented approach.
RAW Services leverage the benefits of SOAP and XML but also incorporate many of
the benefits of the REST architecture, including uniform interface and statelessness.
RAW Services allow for more automated, consistent service and client development
because of the uniform service interface and well-defined operations.

	Table of Contents
	Acknowledgements
	Executive Summary
	REpresentational State Transfer (REST) Overview
	Global Reference Architecture Service Interaction Profile Requirements
	RESTful Resource Access Web (RAW) Services
	Conclusion

